Planetary Magnetic Fields: Planetary Interiors and Habitability
 Joseph Lazio

Thanks to W. M. Farrell, P. Zarka, G. Hallinan, E. Shkolnik, W. M. Keck Institute for Space Studies (KISS) Study team, Thomas Jefferson high school

students

$$
\begin{array}{r}
* \\
\bullet \\
\bullet
\end{array}
$$

Act I: Magnetic Fields a.k.a. Why Do We Care?

Planetary Interiors and Magnetic Fields

Solar System Guidance

Planetary Interiors

Mass-Radius Relation \rightarrow Mass-Radius-Magnetic Field Relation?

Planetary Interiors

Jovian Planets

Planetary Interiors

Ice Giants

Planetary Interiors

Terrestrial-Mass Planets
Not guaranteed to have convecting, conductive Fe-liquid cores

- SiO mantle+Fe core or $\mathrm{Si}-\mathrm{Fe}-\mathrm{O}$ mantle?
- Core (partially) solid? (volatile concentration)
* Marginal convective energy budget in Earth's core
- T > 1500 K
- Stronger tidal heating
- Higher concentration of radio nuclei
- Thick H/He envelope or stagnant lid tectonics

Planetary Interiors

Terrestrial-Mass Planets

Not guaranteed to
have convecting,
conductive Fe-liquid
cores
- SiO mantle+Fe core or
Si-Fe-O mantle?
- Core (partial)
solidification?
\% Marginal convective
\quad energy budget in
Earth's core
$>$ Magnetic field
measurement
constrains planet's
thermal evolution,
energy budget,
may indicate plate
tectonics

An Earth-sized exoplanet with a Mercury-like composition

Santerne et al.; arXiv:1805.08405

What Makes a Planet Habitable?

In parallel with the advances in observations, the exoplanet, Solar System, and astrobiology communities have generated a more comprehensive picture of planetary habitability.
Many factors and interactions are now expected
 to impact planetary habitability. These include the following:

- The presence and distribution of liquid water oceans on the planetary surface ...
- The presence of a stable secondary atmosphere. ...
- The presence of tectonic or volcanic activity and weathering processes to replenish atmospheric loss (...), and buffer climate (...).
- The internal energy budget of a planet
- The presence and strength of a global-scale magnetic field, which depends on interior composition and thermal evolution (Driscoll and Bercovici, 2013).
There are important feedbacks identified between the processes listed above For example, the persistence of a secondary atmosphere over billion-year time scales requires low atmospheric loss rates, which in turn can be aided by the presence of a planetary magnetic field (Driscoll and Bercovici, 2013; Garcia-Sage et al., 2017; Dong et al., 2018).

Act II

Magnetic Fields and Radio

 Emission

Electron Cyclotron Maser Radio Emission

Stellar wind provides energy source to magnetosphere
$\sim 1 \%$ of input energy to auroral region emitted in UV
$\sim 1 \%$ of auroral input energy into electron cyclotron maser radio emission
> Can also be driven by magnetosphere-moon interactions

Planetary Radio Emission

Jupiter

$>$ All gas giants and Earth have strong planetary magnetic fields and auroral / polar cyclotron emission.
Jupiter: Strongest at $\mathbf{1 0}^{\mathbf{1 2}} \mathbf{~ W}$

Planetary Radio Emission

Jupiter - and What We Want To See for an Extrasolar Planet!

Credit: M. Anderson

Radio Searches - State of the Field

Blind Search of the Solar Neighborhood

Sample	Flux Density (30, mJy)	Luminosity (erg/s)	Stellar Wind Amplification Factors					K.E. * Jupiter	M.E. * Jupiter
			v	n	B	$n v^{3}$	$v B^{2}$		
NStars	17	9×10^{23}	1.7	9.8	2.4	48	9.5	4.8×10^{20}	9.5×10^{19}
$\begin{aligned} & \text { SPOCS } \\ & \text {-age } \end{aligned}$	33	1.1×10^{24}	1.4	4.9	1.8	15	4.8	1.5×10^{20}	4.8×10^{19}
SPOCS -eage	28	5.1×10^{23}	1.6	8.6	2.2	38	8.3	3.8×10^{20}	8.3×10^{19}
GCSage	18	7.3×10^{23}	1.6	6.7	2.0	25	6.5	2.5×10^{20}	6.5×10^{19}
$\begin{aligned} & \text { GCS- } \\ & \text { eage } \end{aligned}$	14	5.8×10^{23}	2.2	30	3.6	319	28	3.2×10^{21}	2.8×10^{20}
From nearby catalogs, select - F, G, K stars		Required for detection							iter's aled nosity

- Age < 3 Gyr
- D <~ 40 pc

Act III: Future

Today: LWA-OVRO

Magnetic Emissions from Solar System Planets

Tomorrow: Big Aperture Radio Telescope?

Tomorrow: Radio Array in Space?

Sun Radio Interferometer Space Experiment

Launch	2024 March (TBC)
Selected for Extended Phase A study	2019 February 25
Phase A Concept Study report	2018 July 30
Selected for Phase A study	2017 July 28
SunRISE proposal submitted (NASA/Heliophysics SALMON-2 PEA Q/MOO SCM)	2016 October 14

NASA/Heliophysics
Announcement of ca. 2016 July Opportunity

SunRISE - The Planet Hunter

"Nothing New Under the Sun"

035-5 A Search for Extra-Solar Jovian Planets by Radio Techniques. W.F. YANTIS, U. Wash. and Goldendale Observatory, W.T. SULLIVAN, III, U. Wash. \& W.C. ERICKSON, U, Maryland. - We propose to search for the presence of planets associated with nearby stars through detection of Jovian like decametric radio bursts. Planetary bursts would be distinguished from possible stellar bursts by the presence of a high-frequency cutoff and noeeth1y a modilation asonctated ufth the rotation of the planet. A search for such planetary radio burste at 26.3 MHz is presently being conducted at The Clark Lake Radio Observatory. The sample includes 22 stars within 5 parsecs. The sensitivity limit is 10^{-26} vatts $\mathrm{m}^{-2} \mathrm{~Hz}^{-1}$, gbout 1,000 times the signal axpactad f fom a atwong Jout an hurat. Howavar it fa expected that the strength of any bursts will depend strongly on the planetary magnetic field and also possibly on the presence of a stellar wind. Initial observations exhibit several non-instrumental features which are under current study. Further results will be reported and monitoring observations are continuing.
"A Search for Extra-Solar Jovian Planets by Radio Techniques" (Yantis, Sullivan, \& Erickson 1977)

- Soon after recognition that Saturn also intense radio source
- Earth, Jupiter, Saturn
"A Search for Cyclotron Maser Radiation from Substellar and Planet-like Companions of Nearby Stars (Winglee, Dulk, \& Bastian 1986)

Extrasolar Planetary Magnetic

Fields

- Magnetic fields provide probe of planetary interiors

Both solar system and extrasolar!

- Atmospheric retention (and habitability) influenced by presence of magnetic fields
Other confounding factors?
- Magnetospheric radio emissions are unique probe
Will require ground-based experience to inform future space missions

Extrasolar Planetary Magnetic Fields

BACKUP

