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Sample of LWA-SV 
Ionospheric Science 

1. HF sounding with a DPS4D
2. HF sounding with Lightning
3. VHF imaging of gravity waves in the 

ionospheric E region
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Calm Ionosphere

6 MHz
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Disturbed Ionosphere

6 MHz

𝑘
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LWA-SV to KAFB
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Doppler
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Frequency-and-Angular-Sounding

•FAS relates the power spectra 
of Az, El, and Doppler (or R) to 
the spectra of the bottomside 
Ionosphere (TIDs)

12 OBENBERGER ET AL.: TID MEASUREMENTS WITH LWA-SV

there appears to be at least 5 di↵erent TIDs occurring for both O and X modes.

While there is some agreement between the two modes, the frequency-✓ plots show

some di↵erences. It is relatively easy to identify individual waves in the E-N plane,

due to their di↵ering propagation directions. However, identifying them in U is much

more di�cult as many of the waves appear to smear over one another.

5. Implementing and testing FAS for near vertical sounding

Paznukhov et al. [2012] provides a set of equations relating observations of ✓(t),

�(t), and D(t) to the propagation direction, wavelength, and phase velocity of TIDs.

This is done by converting the observations to a set of composite parameters:

↵(t) =
D sin�(t) cos ✓(t)� L

q
D(t)2 + L2 � 2D(t)L sin� cos ✓

�(t) =
D sin�(t) sin ✓(t)

q
D(t)2 + L2 � 2D(t)L sin� cos ✓

.

(4)

The Fourier transform (FT) of these parameters as well as phase delay, ⌧(t), which

is assumed to be the same as the group delay D/c, where c is the speed of light, can

be related to the propagation direction ⇥(⌦) (not to be confused with the azimuth

(✓(t) of the reflection point) and wavelength spectra K(⌦) by:

tan⇥(⌦) =
S�(⌦)

S�(⌦)
K(⌦) =

4H0

cD0

vuut |S↵(⌦)|2 + |S�(⌦)|2
|S⌧ (⌦)|2

(5)

where ⌦ is the temporal frequency resulting from the FT with respect to t, H0 is the

mean height of the reflection point, and L0 is the mean phase path. Using equation

5, we can derive the direction, wavelength, and subsequently velocity of a given TID.
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Wavelength v Period of TIDs

These are a sample of measured of TIDs

~100 m/s
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Sample of LWA-SV 
Ionospheric Science 

1. HF sounding with a DPS4D 
2. HF sounding with Lightning
3. VHF imaging of gravity waves in the 

ionospheric E region
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•Breakdown of air often occurs 
in steps

•Each step produces a short 
(~10µs) broad band (HF –
UHF; 3 – 3000 MHz) radio 
burst

•Easily observed with an 
antenna or an Array such as 
the LWA-SV

Radio Emission from Lightning
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Radio Emission from Lightning

74 MHz
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Observations with LWA-SV

For isolated bursts it is easy to see the 1 Hop and 2 Hop ionospheric reflections
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How to make an Lionogram?
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How to make an Lionogram?
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Potential Worldwide

NASA OTD
1998-2003
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Imaging the Lionograms
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Sample of LWA-SV 
Ionospheric Science 

1. HF sounding with a DPS4D 
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ionospheric E region



DISTROBUTION A: Cleared for Public Release

UNCLASSIFIED

Traveling Emitting Blobs

38 MHz

• Traveling Emitting Blobs often form 
near the horizon of All-Sky Images

• Often seen in the 20 – 70 MHz 
range

• Sometimes appear to be narrow 
band, but often broader than 100 
kHz band of LASI

• Oftentimes are both linearly and 
circularly polarized

• Typically move from North to South
• Rarely South to North
• Is 7 times more likely to occur 

when local foEs is above 6 MHz
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LWA-SV Broadband Imager

LWA-SVLWA1

38 MHz38 MHz
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LWA-SV Broadband Imager

LWA-SVLWA1

38 MHz38 MHz

P ∝ 𝑓)*
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• Saved raw TBN data 
during a typical 
event

• Imaged at 40 µs 
resolution

• Movie shows that 
blobs are actually 
composed of short 
duration bursts 
(much like lightning

• However, no 
lightning within 100s 
of km

June 19 2019 40 µs All-Sky imaging 
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Could Lightning be the source of VHF?
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Near Vertical from Both Stations

• The phenomenon seen near vertical 
from both stations

• Triangulation puts it in the E region 
(~110 km)

• Velocity puts it at ~60 m/s (AGW 
speeds)

• Could it be scattering of lightning?
– it would have to be of ducted 

modes (2000+ km)
– Why appear isotropic (both 

stations point back to scattering 
region)

• Could it be self emission? 
– Why prefer near horizon?
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Scintillation pattern across 
the array

Amplitude Phase
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Scintillation pattern across 
the array

Amplitude Phase
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Scintillation pattern across 
the array

Amplitude Phase
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Geometry of the Observations
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Geometry of the Observations
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Geometry of the Observations


