

Using the LWA Radio Telescopes to Observe the lonosphere

August 1 2019

Kenneth S. Obenberger (AFRL) Joe Malins (UNM) Jeffrey Holmes (AFRL)

Sample of LWA-SV Ionospheric Science

- 1. HF sounding with a DPS4D
- 2. HF sounding with Lightning
- 3. VHF imaging of gravity waves in the ionospheric E region

Calm Ionosphere

Disturbed Ionosphere

LWA-SV to KAFB

DISTROBUTION A: Cleared for Public Release

Frequency-and-Angular-Sounding

UNCLASSIFIED

DISTROBUTION A: Cleared for Public Release

- Tip FORCE REBEARCH LABORATOR
- •FAS relates the power spectra of Az, El, and Doppler (or R) to the spectra of the bottomside lonosphere (TIDs)

$$\alpha(t) = \frac{D\sin\phi(t)\cos\theta(t) - L}{\sqrt{D(t)^2 + L^2 - 2D(t)L\sin\phi\cos\theta}}$$

$$\beta(t) = \frac{D\sin\phi(t)\sin\theta(t)}{\sqrt{D(t)^2 + L^2 - 2D(t)L\sin\phi\cos\theta}}.$$

$$\tan \Theta(\Omega) = \frac{S_{\beta}(\Omega)}{S_{\beta}(\Omega)}$$

$$(\Omega) = \frac{4H_0}{cD_0} \sqrt{\frac{|S_\alpha(\Omega)|^2 + |S_\beta(\Omega)|^2}{|S_\tau(\Omega)|^2}}$$

 $\tau = R/c$

Wavelength v Period of TIDs

These are a sample of measured of TIDs

Sample of LWA-SV Ionospheric Science

- 1. HF sounding with a DPS4D
- 2. HF sounding with Lightning
- 3. VHF imaging of gravity waves in the ionospheric E region

Radio Emission from Lightning

- Breakdown of air often occurs in steps
- Each step produces a short (~10µs) broad band (HF – UHF; 3 – 3000 MHz) radio burst
- •Easily observed with an antenna or an Array such as the LWA-SV

Radio Emission from Lightning

Observations with LWA-SV

For isolated bursts it is easy to see the 1 Hop and 2 Hop ionospheric reflections

How to make an Lionogram?

How to make an Lionogram?

Potential Worldwide

Imaging the Lionograms

Sample of LWA-SV Ionospheric Science

- 1. HF sounding with a DPS4D
- 2. HF sounding with Lightning
- 3. VHF imaging of gravity waves in the ionospheric E region

Traveling Emitting Blobs

- Traveling Emitting Blobs often form near the horizon of All-Sky Images
- Often seen in the 20 70 MHz range
- Sometimes appear to be narrow band, but often broader than 100 kHz band of LASI
- Oftentimes are both linearly and circularly polarized
- Typically move from North to South
- Rarely South to North
- Is 7 times more likely to occur when local foEs is above 6 MHz

Traveling Emitting Blobs

- Traveling Emitting Blobs often form near the horizon of All-Sky Images
- Often seen in the 20 70 MHz range
- Sometimes appear to be narrow band, but often broader than 100 kHz band of LASI
- Oftentimes are both linearly and circularly polarized
- Typically move from North to South
- Rarely South to North
- Is 7 times more likely to occur when local foEs is above 6 MHz

DDD HHMMSS P1 FFS S AXN PPS IGA PS

Traveling Emitting Blobs

Lowell DIGISONDE

Station YYYY DAY

THE AIR FORCE RESEARCH LABORATORY

LWA-SV Broadband Imager

UNCLASSIFIED

LWA-SV Broadband Imager

June 19 2019

$40 \ \mu s$ All-Sky imaging

- Saved raw TBN data during a typical event
- Imaged at 40 μs resolution
- Movie shows that blobs are actually composed of short duration bursts (much like lightning
- However, no lightning within 100s of km

Near Vertical from Both Stations

- The phenomenon seen near vertical from both stations
- Triangulation puts it in the E region (~110 km)
- Velocity puts it at ~60 m/s (AGW speeds)
- Could it be scattering of lightning?
 - it would have to be of ducted modes (2000+ km)
 - Why appear isotropic (both stations point back to scattering region)
- Could it be self emission?
 - Why prefer near horizon?

DISTROBUTION A: Cleared for P

Scintillation pattern across the array

Scintillation pattern across the array

Scintillation pattern across the array

Geometry of the Observations

Geometry of the Observations

Geometry of the Observations

