Searching for the 21-cm Cosmic Dawn Absorption Signal with the LWA

Christopher DiLullo

Outline

- Introduction to 21-cm Cosmology
- Current Limits of LWA-SV
- Recent Work and Changes
- Achromatic Beamforming

21-cm Cosmology

Pritchard & Loeb (2012)

- First stars emit Lyα which couples hydrogen spin temperature to gas temperature.
- $T_{\nu} < T_{CMP}$, so 21-cm signal seen in absorption.

A Possible Detection! – Bowman et al. 2018

LETTER

doi:10.1038/nature25792

An absorption profile centred at 78 megahertz in the sky-averaged spectrum

Judd D. Bowman¹, Alan E. E. Rogers², Raul A. Monsalve^{1,3,4}, Thomas J. Mozdzen¹ & Nivedita Mahesh¹

EDGES vs LWA-SV

- EDGES is a single dipole → required hundreds of hours of integration.
- LWA-SV has 256 dipoles \rightarrow needs much less time.
 - Should be detectable with an r.m.s. of 50 mK within 25 s!
- Beamforming vs sky-averaged spectrum.

The Sky at 74 MHz

Dowell et al.

(2017)

6

Observational Setup

- 2 simultaneous beams on Virgo A and Science Field.
- 3 hr runs with tuning centers at 67 and 75 MHz.
- Spectrometer mode with 1024 9.57 kHz channels and 80 ms time resolution.
- RFI excision via pseudo-spectral kurtosis flagging.

ASP Temperature Variations

DiLullo, Taylor, & Dowell (2020) *Journal of Astronomical Instrumentation* Vol. 9 No. 2

ASP Temperature Variations

Raw Spectra

DiLullo, Taylor, & Dowell (2020) *Journal of Astronomical Instrumentation* Vol. 9 No. 2

Astronomical Temperature Calibration

- Derive scaling of Virgo A via the Global Sky Model.
- Integrated ~4 minutes of data.
- Apply scaling to raw Science Field spectra.

DiLullo, Taylor, & Dowell (2020) *Journal of Astronomical Instrumentation* Vol. 9 No. 2

Calibrated Spectra

Astronomical Instrumentation Vol. 9 No. 2

Foreground Modelling

- Fit two foreground models
- Power Law: $T(\nu) = k \left(\frac{\nu}{\nu_0}\right)^{\alpha}$
- 5-term Smooth Polynomial: T

ial:
$$T(\nu) = \sum_{n=0}^{4} a_n \left(\frac{\nu}{\nu_0}\right)^{n-2.5}$$

 Table 2.
 Foreground Model Best Fit Parameters

Model	Parameter	XX Polarization	YY Polarization
	a_0	$7.49 \times 10^4 \pm 1.43 \times 10^4$	$2.29 \times 10^4 \pm 2.51 \times 10^4$
N=5 Smooth Polynomial	a_1	$-2.69 \times 10^5 \pm 5.78 \times 10^4$	$-5.96 \times 10^4 \pm 1.01 \times 10^5$
	a_2	$3.66 \times 10^5 \pm 8.74 \times 10^4$	$5.21 \times 10^4 \pm 1.53 \times 10^5$
	a_3	$-2.18 \times 10^5 \pm 5.86 \times 10^4$	$-1.10 \times 10^4 \pm 1.02 \times 10^5$
	a_4	$4.81 \times 10^4 \pm 1.47 \times 10^4$	$-2.72 \times 10^3 \pm 2.57 \times 10^4$
	α	$-2.26 \pm 1.89 \times 10^{-3}$	$-2.14 \pm 3.83 \times 10^{-3}$
Power-Law	a	2.20 ± 1.00 × 10	2.11 ± 0.00 × 10
	k	$3.26 \pm 5.36 \times 10^{-5}$	$3.23 \pm 1.09 \times 10^{-4}$

RMS vs Integration Time

DiLullo, Taylor, & Dowell (2020) *Journal of Astronomical Instrumentation* Vol. 9 No. 2

Recent Work and Changes

- LWA-SV now supports 3 beams with 20 MHz bandwidth per tuning.
 - Now have continuous coverage from 52 83 MHz.
- New weather station installed at LWA-SV.
 - Expanding calibration to account for outside temperature variations which affect FEE response.
- Switched observing strategies.
 - New Science Field center pointing, same large cold region on the sky.
 - Both Science Field and Virgo A take the same track along the sky.
 - We no longer simultaneously observe the SF and Virgo A, but instead focus on observing at times when they have the same position on the sky.
 - Stepped observations give us more control over what the system does.

An Idea for Improvement: Custom Beam Forming

• Sets the size/shape of the beam.

• Make the beam achromatic.

- $Y(\theta, \phi) = R(\theta, \phi) \times (W \cdot V(k))$
 - R antenna gain pattern
 - W weighting vector
 - V steering vector

DiLullo, Taylor, & Dowell (2020) *Journal of Astronomical Instrumentation* Vol. 9 No. 2

Custom Beams

DiLullo, Taylor, & Dowell (2020) *Journal of Astronomical Instrumentation* Vol. 9 No. 2

Achromatic Beams

Main Ideas:

- Modified version of the DRX pipeline within ADP.
- Predetermine the gains needed for each frequency at each pointing.
- Access the gains as needed throughout the observation.

Current Work:

- Static achromatic beam at 180° az 83.5° el \rightarrow Cygnus A transit
- Compare shape of the drifts at each end of the band to see if they match.

Summary

- Detection of cosmic dawn is a very sensitive measurement.
- Current RMS limit of LWA-SV is ~10 K, but we need 50 mK.
- LWA-SV offers beamforming advantages over single element radiometers.
- Currently developing achromatic beamforming via a modified version of the DRX pipeline.

Contact: Chris DiLullo cdilullo@unm.edu