PHYC/ECE 463 Advanced Optics I
Fall 2007
Midterm Exam, Closed Book, 1.5 hours

Class Score Chart (9 students)

Average (with highest and lowest scores removed): 69
Problem 1. (35 points)
Consider the spherical fishbowl (radius \(|R| \)) filled with water having an index \(n \). An object (e.g. a fish), indicated by the arrow, is located near the bowl wall (at a distance \(2|R| \) from vertex \(V \)). Refraction due to thin glass walls can be ignored.

(a) Find the location of the image and discuss its real or imaginary nature with its dependence on \(n \).

(b) Derive an expression for the angle \(\alpha \) subtended by the (virtual) image as seen by an observer situated a distance \(D \) from \(V \) (as shown in the figure). The result should be in terms of \(n \), \(|R| \), \(D \) and \(h \) (the height of object). Assume small angle.

(c) Assume \(|R| = 10 \text{ cm} \), and the bowl is filled with water \((n=1.3) \). Find the distance \(D \) for which the observer sees the fish 25% larger than when it swims to the front side of the bowl (right behind vertex \(V \)).
Problem 2. (25 points) (same as HW 8)
Design an achromatic doublet with the contours indicated in the Fig. below. Use glass 510:635 as the crown component and the glass 620:364 as the flint component. Treat the lenses as thin lenses with zero separation and find a combination of radius of curvature that will produce a lens having a focal length of 100 cm.

![Diagram of an achromatic doublet]

Note: Glass type is xxx:yyy where xxx=(n_r-1)\times1000 and yyy=10\times V

Problem 3. (15 points)
Your are given the following four thin lenses with focal lengths f and diameter D:

<table>
<thead>
<tr>
<th>Lens #</th>
<th>f (cm)</th>
<th>D (cm)</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>5</td>
<td>plano-convex</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>3</td>
<td>plano-convex</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>6</td>
<td>equi-convex</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>5</td>
<td>equi-convex</td>
</tr>
</tbody>
</table>

Which one would you use to light a match faster by focusing the sunlight? Explain.

Problem 4. (25 points)
Briefly (using less than 35 words for each) and using diagrams, equations (when necessary) and examples answer only 2 of the following 3 questions.

(a) Describe the spherical aberration. Give example for a thin lens.

(b) Describe the frustrated total internal reflection.

(c) Why are metals highly reflective at certain wavelengths?
harmonic plane wave: \(E = \text{Re}\{E_0 \exp(\text{i} \omega t - \text{i} k r + \varphi)\} \)

\(k = \frac{n \omega}{c} = \frac{2 \pi n}{\lambda_0} \)

Poynting vector \(S = \frac{1}{\mu_0} E \times B \)

Irradiance: \(I = \langle S \rangle = \frac{\varepsilon_0 n c}{2} \left| E_0 \right|^2 \)

\(n \sin(\theta_i) = n_s \sin(\theta_s) \quad \text{Snell's Law} \)

\[
\begin{align*}
\rho_\sigma &= \frac{n_s \cos(\theta_i) - n \cos(\theta_s)}{n_s \cos(\theta_i) + n \cos(\theta_s)} = \frac{\tan(\theta_s - \theta_i)}{\tan(\theta_s + \theta_i)} \\
\rho_\sigma &= -\frac{n_s \cos(\theta_i) - n \cos(\theta_s)}{n_s \cos(\theta_i) + n \cos(\theta_s)} = \sin(\theta_i - \theta_s)
\end{align*}
\]

\(1 - \rho^2 = \frac{R}{T} \quad R \approx |\rho|^2 \)

\(R + T = 1 \)

If \(n \) is complex then \(n \rightarrow \bar{n} = n - \text{i} \kappa = \sqrt{\frac{\varepsilon}{\varepsilon_0}} = \sqrt{1 + \chi} \) in above expressions

Absorption coefficient (\(K \) or \(\alpha \)) and skin depth (\(\delta \)): \(\alpha = \frac{2}{\delta} = \frac{4 \pi \kappa}{\lambda_0} \)

Classical Electron Oscillator Model:

\(\chi = \frac{\omega_p^2}{\omega_p^2 - \omega^2 + i \omega / \tau} \)

where \(\omega_p = \sqrt{\frac{N q^2}{m_0 e_0}} \) (plasma frequency)

Drude model for metals: \(\omega_p \rightarrow 0 \)

Group Velocity \(v_g = \frac{d\omega}{dk} \)

Light pressure (on perfecting absorbing surface) \(P = \frac{\dot{I}}{c} \)

Prism with apex angle \(\alpha \) at minimum deviation angle \(\theta_D \):

\[
\sin \left(\frac{\alpha + \theta_D}{2} \right) = \frac{n_0}{n}
\]

Numerical Aperture (NA) of an optical fiber: \(f# \) (f-number) = \(f/D \)

\[
n_0 \sin(\theta_{\text{max}}) = \sqrt{n_f^2 - n_c^2}
\]
Lens-makers' formula: \[\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) \]

Gaussian imaging formula (thin lens) \[\frac{1}{f} = \frac{1}{S} + \frac{1}{S'} \]

(refractive sphere) \[\frac{n'-n}{R} = \frac{n}{S} + \frac{n'}{S'} \]

\[m_x = \frac{S'}{S} \] (transverse magnification) \[m_a = \frac{n/n'}{m_x} \] (angular magnification)

Paraxial Ray Tracing Matrices:

<table>
<thead>
<tr>
<th>Propagation</th>
<th>Refractive surface</th>
</tr>
</thead>
</table>
| \[
\begin{pmatrix}
1 & 0 \\
\frac{d}{n} & 1 \\
\end{pmatrix}
\] (length d and index n) | \[
\begin{pmatrix}
1 & -P \\
0 & 1 \\
\end{pmatrix}
\] where \(P = (n'-n)/R \) |

<table>
<thead>
<tr>
<th>Mirror with radius of curvature R</th>
<th>Thin lens of focal length f</th>
</tr>
</thead>
</table>
| \[
\begin{pmatrix}
1 & -2/R \\
0 & 1 \\
\end{pmatrix}
\] | \[
\begin{pmatrix}
1 & -1/f \\
0 & 1 \\
\end{pmatrix}
\] |

<table>
<thead>
<tr>
<th>Thick lens (Thickness (D_1), index (n_1))</th>
<th>Separated Doublet</th>
</tr>
</thead>
</table>
| \[
\begin{pmatrix}
1 - \frac{P'D_1}{n_1} & -P - P' + \frac{PnP'D_1}{n_1} \\
\frac{D_1}{n_1} & 1 - \frac{PD_1}{n_1} \\
\end{pmatrix}
\] \(P = (n-n)/R \), \(P' = (n'-n)/R' \) | \[
\begin{pmatrix}
1 - \frac{d}{f_1n_b} & -\frac{1}{f_1} - \frac{1}{f_2} + \frac{d}{f_2f_1n_b} \\
\frac{d}{n_b} & 1 - \frac{d}{f_1n_b} \\
\end{pmatrix}
\] |

between conjugate planes	between principal planes
\[
\begin{pmatrix}
m_x & n' \\
m_0 & m_x \\
\end{pmatrix}
\] \(\tilde{M}_{12} \) | \[
\begin{pmatrix}
1 & M_{12} \\
0 & 1 \\
\end{pmatrix}
\] |

for telescopic Systems	position of principal planes
\[
\begin{pmatrix}
m_g & n' \\
M_{21} & m_x \\
\end{pmatrix}
\] | \[
D = \frac{n}{M_{12}} (1-M_{11}) \\
D' = \frac{n'}{M_{12}} (1-M_{22}) \\
\] |

Contact Doublet Achromatization:

\[f_1Y_1 + f_2Y_2 = 0 \]

where \(V = \frac{n_g - 1}{n_f - n_c} \) is the Abbe number

Physical constants:

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed of light</td>
<td>(\sim 2.998 \times 10^8) m s(^{-1})</td>
</tr>
<tr>
<td>electronic charge</td>
<td>(\sim 1.602 \times 10^{19}) C</td>
</tr>
<tr>
<td>permittivity of vacuum</td>
<td>(\sim 8.854 \times 10^{-12}) F/m</td>
</tr>
<tr>
<td>electronic mass</td>
<td>(m_0 \sim 9.1094 \times 10^{-31}) Kg</td>
</tr>
<tr>
<td>Planck constant</td>
<td>(h \sim 6.626 \times 10^{-34}) J.s</td>
</tr>
</tbody>
</table>

Near distance of a normal eye: \(d_0 = 250 \) mm
S = 2 |R|

\[\frac{n}{s} + \frac{1}{s'} = -\frac{1-n}{|R|} \Rightarrow \frac{n}{2|R|} + \frac{1-n}{|R|} = \frac{1}{s'} \]

\[s' = \frac{2|R|}{2 + n} \]

\[s' > 0 \iff n > 2 \quad \text{(real image)} \]

\[s' < 0 \iff n < 2 \quad \text{(virtual image)} \]

\[x' = \frac{-S'}{S} = \frac{1}{2-n} \]

\[\alpha = \frac{x'}{-S' + D} = \frac{x'}{D + \frac{2|R|}{2-n}} = \frac{-\frac{s'}{s}}{D + \frac{2|R|}{2-n}} = \frac{1}{D + \frac{2|R|}{2-n}} \]

\[\alpha = \frac{h}{(2-n)D + 2|R|} \]
\[M \alpha = \frac{\alpha}{\alpha_0} = \frac{D}{(2-n)D + 2IR} \]

\[D(1 - M(2-n)) = M \cdot 2R \]

\[D = 2IR \times \frac{M}{1 - M(2-n)} \]

\[M = 1.25 \quad n = 1.3 \quad IR = 10 \quad \text{cm} \]

\[D = 2IR \times 10 = 200 \quad \text{cm} \]
Glass: $\frac{510:635}{F_{\text{Crown}}} \Rightarrow n_{d1} = 1.510 \quad V_1 = 63.5$

Flint: $\frac{620:364}{F_{\text{Flint}}} \Rightarrow n_{d2} = 1.620 \quad V_2 = 36.4$

\[
f_1, V_1, f_2 V_2 = 0.
\]

\[
\frac{1}{f_1} = \frac{-V_1}{V_2-V_1} \frac{1}{f}
\]

\[
\frac{1}{f_2} = \frac{V_2}{V_2-V_1} \frac{1}{f}
\]

\[
\frac{1}{f_1} = \frac{-63.5}{36.4-63.5} \frac{1}{f}
\]

\[
\frac{1}{f_2} = \frac{36.4}{36.4-63.5} \frac{1}{f}
\]

\[
\frac{1}{f_1} = 2.343 \times 100
\]

\[
\frac{1}{f_2} = -1.343 \times 100
\]

\[
\frac{1}{f_1} = 2.343 = (1.510-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \Rightarrow \frac{1}{R_1} - \frac{1}{R_2} = 0.0459
\]

\[
\frac{1}{f_2} = -1.343 = (1.620-1)\left(\frac{1}{R_2} - \frac{1}{\infty}\right) = \frac{1}{R_2} = -0.0216
\]

\[
R_2 = -46.16 \text{ cm}
\]

\[
R_1 = 41.25 \text{ cm}
\]
#3 Find f# of each lens.

\[
\begin{array}{cccccc}
\Phi & 1 & 2 & 3 & 4 \\
D & 4 & 5 & 4.7 & 4
\end{array}
\]

So lenses 1 & 4 have the lowest f#.

However, for focusing rays from sun (S → D), a plano-convex lens works best (minimizes the spherical aberration). So lens 1 is the one to be used as

#2-1. Read the text & the class notes.