Semiconductor Lasers

A Variety of Small Laser Diodes

Worldwide commercial laser revenues

Direct-Gap vs. Indirect-Gap E(energy) СВ СВ k (momentum) Phono hν VB VB

- Direct bandgap materials
 - CB minimum and VB maximum occur at the same k
 - Examples
 - GaAs, InP, InGaAsP
 - (Al_xGa_{1-x})As, x < 0.45

- Indirect bandgap materials
 - CB minimum and VB maximum occur at different k
 - Example
 - Si, Ge
 - (Al_xGa_{1-x})As, x > 0.45
 - Not "optically active"

E-k diagrams

Optical Interactions in a Direct-Gap Semiconductor

A Brief Introduction to Semiconductors Energy Bands

http://britneyspears.ac/lasers.htm !!!???

Nonequilibrium Electron-Hole Injection

Section 12.1 p.2

p-n junctions

Doping with Impurities

n-type

Examples: GaAs doped with Br

Si doped with P

p-type

Examples: GaAs doped with Zn

Si doped with Al

Semiconductor junction lasers

Edge-Emitting Homojunction Laser Diodes

Section 12.2 p.2

Homojunction Lasers have very high current threshold mainly because.

•Electrons and holes are free to diffuse and therefore dilute the gain (no carrier confinement)

•Optical mode has poor overlap with gain (no optical confinement or guiding)

12.3 Heterojunction Lasers Diodes

Section 12.3 p.2

Edge-Emitting Heterojunction Laser Diodes

Edge-Emitting Buried Heterojunction Laser Diodes

Schematic illustration of the the structure of a double heterojunction stripe contact laser diode

© 1999 S.O. Kasap, Optoelectronic (Prentice Hall)

12.4 Quantum Well Lasers

Multiple Quantum Well (MQW) Lasers

Epitaxial Growth

Section 12.4 p.2

High Power Diode Bars

•P>100 W (cw)

- Diode-pumping solid-state lasers (DPSS)
- Material Processing

Section 12.4 p.3

Vertical Cavity Surface Emitting Lasers (VCSEL)

- •Good mode quality couples to fiber efficiently for telecom applications
- •Single mode operation
- •2-D structures cam be made
- •Low power

Optically-Pumped Semiconductor Lasers (OPSL)

Section 12.4 p.4

Laser Diodes Cover the Spectrum

Compound	Spectral Region	Notes
Al _x Ga _{1-x} N GaN In _x Ga _{1-x} N	uv uv (350 nm) blue (480-400 nm)	data storage, display
$Ga_{x}I_{1-x}P$ (x=0.5) $Ga_{x}Al_{1-x}As$ (x=0-0.45)	670 nm 620-895 nm	display
GaAs In _x Ga _{1-x} As (x=0.2)	904 nm 980 nm	diode pumping solid-state and fiber lasers.
$In_xGa_{1-x}As_yP_{1-y}$ (x=0.73, y=0.58) (x=0.58, y=0.9)	1100-1650 1310 nm 1550 nm	Telecom

PbSSe	4200-8000 nm	cryogenic
PbSnTe	6300-29,000 nm	cryogenic

Original concept and theoretical prediction

R. F. Kazarinov and R. A. Suris, Fiz. Tekh. Poluprovodn, 5, pp. 797-800, (1971).

Section 12.5 p.2

Wide wavelength-range of QC lasers

QC lasers cover entire mid-infrared wavelength range (3.4 - 17 µm) by tailoring layer thicknesses of the same material

THE END !

"Mr. Osborne, may I be excused? My brain is full."

Final Exam Thursday, Dec. 16 Comprehensive, Closed Book

> Review Session Thursday, Dec. 9