1. Thermal n_2^{eff}

(a) Calculate the nonlocal n_2^{eff} (defined as $\langle \Delta n \rangle / I_0$) due to laser heating of a liquid characterized by its absorption coefficient α (cm$^{-1}$), density ρ (gr./cm3), heat capacity C_v(J/K/gr.) and thermo-optic coefficient dn/dT (K$^{-1}$). The laser intensity is $I(t)=I_0 f(t/\tau_p)$ where I_0 is the peak intensity and $f(t/\tau_p)$ denotes the normalized temporal profile of the pulse. Thermal diffusion can be ignored in this problem if we assume that the diffusion time is much longer than τ_p while being much shorter than the inter-pulse spacing. The latter requirement is for avoiding heat accumulation from pulse to pulse.

(b) Evaluate n_2^{eff} for liquid CS$_2$ and a pulsed CO$_2$ laser ($\lambda=10.6$ µm) having a square temporal profile ($\tau_p=100$ ns). The CS$_2$ parameters are $\alpha=0.2$ cm$^{-1}$, $\rho C_v=1.3$ J/K/cm3, and $dn/dT=-8 \times 10^{-4}$ K$^{-1}$.

(c) If the sound velocity (v_s) in CS$_2$ is 1.5×10^5 cm/sec., what is the largest laser spot-size (w_0) for which the n_2^{eff} obtained in (b) is valid? What happens as the spot size becomes larger than this value?

2. n_2^{eff} due to photo-generation of charge-carriers in semiconductors:

(a) Calculate the n_2^{eff} due to resonant interband charge-carrier generation in semiconductors. The known parameters for the semiconductor are: the band-gap energy E_g, the electron effective mass m^* (for both conduction and valence bands), the valence-to-conduction band absorption coefficient α, and the carrier recombination time τ. This requires a calculation of the electronic density change ΔN (in both bands) due to linear absorption followed by the calculation of the resultant index change Δn from both bands using a harmonic classical electron oscillator (CEO) model. In this simple approach, the electrons in the valence band are considered bound with a resonant frequency $\omega_0=\omega_0=\omega_{0g}=E_g/\hbar$, while the conduction electrons are considered free ($\omega_0=0$). Ignore damping in the CEO models. The governing equation for ΔN is:

$$\frac{d\Delta N}{dt} = \frac{\alpha(t)}{\hbar \omega} - \frac{\Delta N}{\tau}$$

where $\hbar \omega$ is the incident photon energy and $I(t)=I_0 f(t/\tau_p)$ is the instantaneous laser intensity. Consider two extreme cases of $\tau_p>>\tau$ and $\tau_p<<\tau$. (You may assume a rectangular pulse).

(b) Evaluate n_2^{eff} (cm/W) and the effective $\chi^{(3)}$ (esu) for GaAs with $E_g=1.4$ eV, $m^*=0.1 m_0$, $\alpha=100$ cm$^{-1}$, $\tau=1$ ns. The laser wavelength is $\lambda=900$ nm and $\tau_p=10$ ps.

(c) Do you expect an absorptive component $\Delta \alpha$ associated with the above index change Δn? Explain (briefly).