## PHYC 569, Advanced Topics in Modern Optics (Laser Physics II: PHYC/ECE 564) Fall 2016 Homework #3, Due Tue Oct. 4 Instructor: M. Sheik-Bahae

- 1.
- (a) Find the e-h carrier density  $(n_t)$  required to just invert GaAs having  $E_g=1.43$ ,  $m_e=0.07m_0$  and  $m_h=0.5m_0$ . Assume T=300K.
- (b) For a gain layer of d=1µm, calculate the steady-state current density (J<sub>t</sub>) needed to sustain the above carrier density if the radiative recombination rate (given by  $BN_eN_h$ ) is the dominating recombination mechanism where  $B \cong 2 \times 10^{-10} \text{ cm}^3/\text{sec.}$
- (c) Find the peak value of the gain  $\gamma$ , its peak wavelength  $\lambda_{peak}$ , and the width of the gain  $\Delta\lambda$ , if the current density is increased to  $2 \times J_t$ .
- (d) Repeat (a) and (b) for T=77 K to appreciate the temperature dependence of the threshold current of semiconductor lasers.
- 2.
- (a) Derive an expression for the radiative recombination rate  $B=R/N_{eh}^{2}$  at low injection carrier density limit. Identify the temperature dependence. Estimate B for GaAs.
- (b) Derive an expression for the mean fluorescence wavelength  $(\lambda_f)$  and plot  $\lambda_f / \lambda_g$  as a function of temperature for GaAs (Use low carrier injection approximation).

Use van Roosbroeck-Shockley (reciprocity) relation:  $R(v) = \frac{8\pi n^2 v^2}{c^2} \alpha_0(hv) \{f_c(1-f_v)\}$  $R = BN^2 = \int R(v) dv$ 

- **3.** Consider a symmetric optical slab waveguide shown below.
  - (a) For  $\lambda_0=1.5 \mu m$  (in free space), find the number of TE modes in this waveguide.
  - (b) What are the confinement factors ( $\Gamma$ ) for TE<sub>0</sub> and TE<sub>1</sub> modes?

