Nonlinear Optics (PHYC/ECE 568) Spring 2007

Midterm Exam I, Open Text-Book, Time: 1.5 hour

NAME
last
first

Please staple and return this page with your exam.

1. SHG Bandwidth (a HW problem):

a. Calculate the bandwidth $\Delta \omega$ associated with a phase-matched SHG process in terms of the group velocities $v_{g}\left(\omega_{l}\right)$ and $v_{g}\left(2 \omega_{l}\right)$. Bandwidth is defined as the frequency spread around ω_{1}, for which $\Delta k\left(\omega_{1} \pm \Delta \omega / 2\right) L=2 \pi$. with L denoting the length of the nonlinear crystal. Hint: Use the first-order term in the Taylor series expansion of $\Delta k(\omega)$. (15 pts.)
b. Discuss how your results in (a) explains the limitation on the SHG-efficiency when ultrashort laser pulses are used.

Note group velocity $v_{g}=(\mathrm{d} k / \mathrm{d} \omega)^{-1}$

2. SHG Acceptance Angle:

a. In a similar manner as in problem 1, calculate the acceptance angle ($\Delta \theta$) for a type-I phase matched SHG process. Acceptance angle is defined as angular spread around θ_{m}, for which $\Delta k\left(\theta_{m} \pm \Delta \theta / 2\right) L=2 \pi$. Assume negative birefringence in a uniaxial crystal where $\Delta \mathrm{k}(\theta)=(2 \omega / \mathrm{c})\left(\mathrm{n}_{\mathrm{e}}{ }^{2 \omega}(\theta)-\mathrm{n}_{0}{ }^{\omega}\right) . \quad(20$ pts.)
b. Assuming small birefringence $\left(\mathrm{n}_{\mathrm{e}} \approx \mathrm{n}_{\mathrm{o}}\right)$, show that

$$
\Delta \theta \cong \frac{\lambda_{\omega}}{L\left(n_{o}^{2 \omega}-n_{e}^{2 \omega}\right) \sin \left(2 \theta_{m}\right)} \quad \text { (5 pts.) }
$$

c. What limitation does this impose on the useful length of the crystal for an incident focused Gaussian beam of waist w_{0} (recall: divergence angle is $\lambda / \pi \mathrm{nw}_{0}$). (10 pts.)
d. Briefly discuss the implications of the above relationship for various angles (e.g. for $\theta_{\mathrm{m}}=90^{\circ}$). (5 pts .)

3. $d_{\text {eff: }}$

Consider AgGaSe_{2} crystal in a SHG process. The orientation of the input field at ω is given by $E(\omega)=A_{0}(2 \hat{x}+1 \hat{y}+3 \hat{z})$, where x, y, and z are the principle axes of the crystal. What is $\mathrm{d}_{\mathrm{eff}}$? (10 pts.)

Note: From table 1.5.3 and Fig. 1.5 .2 (in Boyd) you get $d_{i l}(\mathrm{pm} / V)$ tensor in AgGaSe_{2} to be:

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & 81 & 0 & 0 \\
0 & 0 & 0 & 0 & 81 & 0 \\
0 & 0 & 0 & 0 & 0 & -81
\end{array}\right)
$$

4. A fictional molecule has the following energy levels. Draw the spectrum (for $0<\hbar \omega<3 \mathrm{eV}$) for the (a) linear absorption coefficient α, (b) two-photon absorption coefficient β, (c) $\left|\chi^{(2)}(2 \omega ; \omega, \omega)\right|$ and (d) $\left|\chi^{(3)}(3 \omega ; \omega, \omega, \omega)\right|$. (30 pts.)

Be quantitative in your x-axis. Assume a finite broadening in your drawings. Point out the resonances (diagrammatically) on your graph for each case and show the relative strengths if obvious. Note: no calculations needed for this problem.

1- See H.W Solutain

$$
\begin{aligned}
& \text { 2- SHG B.W } \\
& \Delta k(\theta)=\frac{2 \omega}{C}\left(n_{e}^{2 \omega}(\theta)-n_{0}^{\omega}\right)
\end{aligned}
$$

Tavlor devis Expansion

$$
\begin{aligned}
& \left.\Delta k(2)=\Delta k g \theta_{m}\right)+\left.\frac{\partial k}{\partial \theta}\right|_{\theta=\theta_{m}}\left(\theta-\theta_{m}\right)+\theta\left(\theta-\theta_{n}\right)^{2} \\
& \Delta k\left(\partial_{m}+\frac{\Delta \theta}{2}\right) L=\left.\frac{\partial k}{\partial \theta}\right|_{2} \frac{\Delta \theta}{2} L=2 \pi \\
& \Delta \theta=\frac{4 \pi}{\left(\frac{\partial k}{\partial \partial}\right)_{2 m}^{L}} \\
& \frac{\partial k}{\partial \alpha}=\frac{2 \omega}{c} \frac{\partial n_{e}^{2 \omega}(\partial)}{\partial \partial} \\
& \left(n_{e}^{2 \omega}(\alpha)\right)^{-2}=\left(n_{e}^{2 \omega}\right)^{-2} \sin ^{2} \theta+\left(n_{0}^{2 \omega}\right)^{-2} \cos \theta \\
& n_{e}^{2 \omega}(\theta)=\left[\left(n_{e}^{2 \omega}\right)^{-2} \sin ^{2} \theta+\left(n_{0}^{2 \omega}\right)^{-2} \cos ^{2} \theta\right]^{-\frac{1}{2}} \\
& \left.\frac{\partial n_{e}^{2 \omega}}{\partial \theta}\right|_{\theta=Q_{r}}=-\frac{1}{2}\left[\frac{2 \lambda_{c} \theta_{m} e_{0} \theta_{m}}{\left(n_{e}^{2 W}\right)^{2}}+\frac{-2 \sin \theta_{n} \operatorname{co} \theta_{m}}{\left(n_{0}^{2 \omega}\right)^{2}}\right][
\end{aligned}
$$

$$
\begin{aligned}
&=-\frac{\operatorname{sen}^{2}}{2} \theta_{m}\left[\frac{1}{\left(n_{e}^{20}\right)^{2}}-\frac{1}{\left(n_{0}^{2 w}\right)^{2}}\right] \cdot\left[\frac{1}{\left(n_{0}^{w}\right)^{3}}\right]^{-3 / 2} \\
& \frac{\partial A}{\partial n_{e}}\left(=\frac{-\sec ^{2} \theta_{m}}{2} \times\left(n_{0}^{\omega}\right)^{3}\left(\frac{1}{\left(n_{e}^{2 \omega}\right)^{2}}-\frac{1}{\left(n_{0}^{2 \omega}\right)^{2}}\right)\right.
\end{aligned}
$$

4

$$
\begin{aligned}
n_{e} \approx n_{0} & \approx n \\
\frac{\partial n_{e}(2)}{\partial 2} & =-\frac{2 c}{2} \Delta_{n} \times \frac{n^{3}}{n^{4}}\left(n_{0}^{2}-n_{e}^{2}\right)^{2 \omega} \\
& \approx-\frac{\operatorname{si2}}{2}-\frac{n^{3}}{n^{1}} 2 n \Delta n \\
& =\alpha_{2} 2 \theta n \\
\Delta n . & \Delta n \equiv\left(n_{0}-n_{e}\right)_{2 \omega}
\end{aligned}
$$

$$
\left.\frac{\partial k}{\partial \partial}\right|_{2-n}=\frac{2 w}{c} \quad 22 \sim \Delta n=\frac{4 \pi}{\lambda_{w}} \Delta n \sin
$$

$$
\Delta D=\frac{\lambda_{m}}{\Delta n \Delta r \theta_{m} \times L}
$$

$$
\Delta Q_{d i v}=\frac{\lambda}{\pi n W_{0}}
$$

we must have

$\Delta \theta_{\text {dii }}<2 \Delta \theta\binom{$ Note: $\Delta \theta_{\text {dii }}$ is haff argle }{$\Delta \theta$ is fuel angly }

$$
\begin{aligned}
& \frac{X_{w}}{\pi n \omega_{0}}<2 \frac{\lambda_{\omega}}{\Delta n \sin \theta_{m} \cdot L} \\
& L<\frac{2 \pi n W_{0}}{\Delta n \sin 2 \theta_{m}}=A_{d}
\end{aligned}
$$

bs definolue.
(Note This is $\sqrt{\text { olne }}$ Dorne as $l_{\text {a }}$ damen
Pannting rector walk-iff). (HW\#3)

$$
l_{a}=\frac{\sqrt{\pi} n W_{0}}{\Delta n Q_{n} 22_{m}}
$$

(d) at $Q_{n}=\frac{\pi}{2}, \quad l_{d} \rightarrow \infty \quad{ }_{\infty}$

Thes is becouse $\frac{\partial k}{\partial \theta} \rightarrow 0$ and me must tapu hugher ordererms 'the expansiós intor account. $\left(\frac{\partial^{2} k}{\partial \theta^{2}}, \cdots\right)$.
Thas leads $t \quad \Delta A=\sqrt{\frac{\lambda \omega}{2 L\left(n_{0}^{2 \omega}-n_{e}^{1 \omega}\right)}}$
B

$$
\begin{aligned}
E(u) & =A_{0}(2 \hat{x}+1 \hat{y}+3 \hat{z}) \\
& =\underbrace{A_{0} \times \sqrt{14}}_{E_{0}}(\frac{2}{\left.\sqrt{n_{1}} \hat{x}+\frac{1}{\sqrt{4}} \hat{y}+\frac{\rho \hat{z}}{\sqrt{14}}\right)} \underbrace{}_{\hat{e} \text { unit vertor. }}
\end{aligned}
$$

$$
\begin{aligned}
P & =2 \text { depf }\left|E_{0}\right|^{2} \\
& =2 \cdot\left[\begin{array}{ccccc}
0 & 0 & 0 & 8 & 0 \\
0 & 0 & 0 & 0 & -81 \\
0 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
E_{x}^{?} \\
E_{3}^{2} \\
E_{7} \\
2 E_{y} E_{2} \\
2 E_{x} E_{2} \\
2 E_{y} E_{x}
\end{array}\right]
\end{aligned}
$$

$$
d_{P}=81\left[\frac{6}{14}-\frac{12}{14}-\frac{4}{14}\right]=-\frac{810}{14} \quad \text { Pan } / V
$$

