Nonlinear Optics (PHYC/ECE 568)
 Fall 2008

Instructor: Prof. M. Sheik-Bahae
Midterm Exam, Open Text-Book, Time: 1.5 hour

Solutions \& Class Statistic
8 students
Average $=77$ (72 discarding max $\& \min)$

1. NL Susceptibilities (45 points)

Two optical beams E_{1} and E_{2} with wavelengths of 1.0 and $0.6 \mu \mathrm{~m}$ respectively are incident on a nonlinear material.

(a) Assuming a $\chi^{(2)}$ nonlinearity, what new wavelengths can possibly be generated in this material? (8 pts)

The above nonlinear material is now replaced with a centro-symmetric material for the reaming part of this problem.
(b) What is the dominant nonlinear susceptibility? (2 pts)
(c) Assuming $\chi^{(3)}$ nonlinearity, what new wavelengths λ_{j} can possibly be generated in this material that simultaneously involve the interaction of both E_{1} and E_{2} beams? Write down the corresponding nonlinear polarization $\mathrm{P}\left(\lambda_{\mathrm{j}}\right)$ including their $\chi^{(3)}\left(\lambda_{\mathrm{j}} ; \lambda_{\mathrm{k}}, \lambda_{\mathrm{q}}, \lambda_{\mathrm{p}}\right)$ terms (ignore Cartesian indices). (10 pts)
(d) If $\left|E_{1}\right| \gg\left|E_{2}\right|$, identify the most dominant terms in part (c). (5 pts)
(e) Write down the nonlinear polarization terms associated with self- and cross phase modulation of each beam (identify $\chi^{(3)}\left(\lambda_{\mathrm{j}} ; \lambda_{\mathrm{k}}, \lambda_{\mathrm{q}}, \lambda_{\mathrm{p}}\right)$ terms) (10 pts)
(f) Under what condition the simultaneous presence of both beams leads to a nonlinear attenuation (absorption) of both beam? Describe this process, the required energy resonance (use diagrams), and the nature of the complex susceptibility $\chi^{(3)}\left(\lambda_{\mathrm{j}} ; \lambda_{\mathrm{k}}, \lambda_{\mathrm{q}}, \lambda_{\mathrm{p}}\right)$ (with respect to part e). (10 pts)
(g) Under what condition the simultaneous presence of both beams leads to a nonlinear attenuation (absorption) of one beam (which?) and gain in the other (which?)? Describe this process, the required energy resonance (use diagrams), and the nature of the complex susceptibility $\chi^{(3)}\left(\lambda_{\mathrm{j}} ; \lambda_{\mathrm{k}}, \lambda_{\mathrm{q}}, \lambda_{\mathrm{p}}\right)$ (with respect to part e and f). (Bonus: 10 pts)
a)

$$
\begin{aligned}
& \lambda_{1}=1 \mu \mathrm{~m} \\
& \lambda_{2}=0.6 \mu \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
2 \omega_{1} \Rightarrow \frac{\lambda_{1}}{2} & =0.5 \mu \mathrm{~m} \\
2 \omega_{2} \Rightarrow \frac{\lambda_{2}}{2} & =0.3 \mu \mathrm{~m} \\
\omega_{3}=\omega_{2}-\omega_{1} \Rightarrow \lambda_{3} & =\left(\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{1}}\right)^{-1}=\frac{0.6<1}{1-0.6}=1.5 \mu \mathrm{~m} \\
\omega_{4}=\omega_{2}+\omega_{1} \Rightarrow \lambda_{4} & =\left(\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{1}}\right)^{-1}=\frac{0.6 \times 1}{1+0.6}=0.375 \mathrm{~mm}
\end{aligned}
$$

b) $x^{(3)}$
C)

$$
\begin{array}{ll}
\omega_{3}=2 \omega_{1}+\omega_{2} & \lambda_{3}=\left(\frac{2}{\lambda_{1}}+\frac{1}{\lambda_{2}}\right)^{-1}=\frac{0.5 \times 0.6}{0.5+0.6}=0.273 \mu \mathrm{~m} \\
\omega_{4}=2 \omega_{2}+\omega_{1} & \lambda_{1}=\left(\frac{2}{\lambda_{2}}+\frac{1}{\lambda_{1}}\right)^{-1}=\frac{0.3 \times 1}{1+0.3}=0.231 \mu \mathrm{~m} \\
\omega_{5}=2 \omega_{2}-\omega_{1} & \lambda_{5}=\left(\frac{2}{\lambda_{2}}-\frac{1}{\lambda_{1}}\right)^{-1}=\frac{0.3 \times 1}{1.0 .3}=0.428 \mu \mathrm{~m} \\
\omega_{6}=2 \omega_{1}-\omega_{2} & \lambda_{5}=\left(\frac{2}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)^{-1}=\frac{0.5 \times 0.6}{0.6-0.5}=3.8 \mu \mathrm{~m}
\end{array}
$$

$$
\begin{aligned}
& P\left(w_{3}\right)=3 \epsilon_{0} x^{(3)}\left(w_{3} ; w_{1}, w_{1}, w_{2}\right) E_{1}^{2} E_{2} \\
& P\left(w_{1}\right)=3 \epsilon_{0} x^{(3)}\left(w_{4} ; w_{2}, w_{2}, w_{1}\right) E_{2}^{2} E_{1} \\
& P\left(w_{5}\right)=3 \epsilon_{0} x^{(3)}\left(w_{5} ; \omega_{2}, w_{2}, w_{1}\right) E_{2}^{2} E_{1}^{*} \\
& P\left(w_{6}\right)=3 \epsilon_{0} x^{(3)}\left(\omega_{6} ; w_{1}, w_{1}, w_{2}\right) E_{1}^{2} E_{2}^{\pi}
\end{aligned}
$$

d) $\quad\left|E_{1}\right|>\left|E_{2}\right| \quad w_{3}=\left(2 w_{2}+w_{2}\right) \quad$ and $w_{6}=\left(2 w_{1}-w_{2}\right)$ are domunarit
e) SpM \& $\operatorname{Sp} M$

$$
\begin{aligned}
& P\left(\omega_{1}^{(3)}\right)=3 \epsilon_{0}\left[x^{(3)}\left(\omega_{1} ; \omega_{1}, \omega_{1},-\omega_{1}\right)\left|E_{1}\right|^{2} E_{1}+\frac{\sum x^{(3)}\left(\omega_{1}, \omega_{1}, \omega_{2}-\omega_{2}\right)}{4}\left(E_{2}\right)^{2} E_{1}\right\} \text {. } \\
& \text { SPM } \\
& 1 \\
& \text { xpm. } \\
& \text { Simulorly. } \\
& P^{(3)}\left(\omega_{2}\right)=3 \epsilon_{0}\left[x^{(3)}\left(\omega_{2} ; \omega_{2}, \omega_{2},-\omega_{2}\right) \mid E_{2}+2 x^{(3)}\left(\omega_{2} ; \omega_{2}, \omega_{11}-\omega_{1}\right)\right] \\
& \text { }\left|E_{1}\right|^{2} E_{2}
\end{aligned}
$$

f) Nonlineon aleanption is both beums occur eundr nondegenerate "turo-photon abseaptoo"

This Consespands to Imaginary pat af

$$
\begin{aligned}
& x^{(3)}\left(w_{1} ; w_{1}, w_{2},-w_{2}\right) \\
& \chi^{(3)}\left(w_{2} ; w_{2}, w_{1},-w_{1}\right) \\
& \frac{\frac{d I_{1}}{d z}=-\beta I_{1} I_{2}}{\left.w_{2}\right]\left[-w_{2}\right.} \\
& \frac{d I_{2}}{d z}=-\beta I_{1} I_{2}
\end{aligned}
$$

g) BONUS

This is a Roman-type plowswher $\omega_{2}-\omega_{1}=\omega_{g u}$ sis which ω_{2} is absosked and w_{1} is amplified

$$
x_{I}^{(3)}\left(\omega_{1} ; \omega_{1}, \omega_{2},-\omega_{2}\right) \text { ar } x_{I}^{(3)}\left(\omega_{2} ; \omega_{2}, \omega_{1},-\omega_{1}\right)
$$

Imaginary \rightarrow

$$
\begin{aligned}
& \frac{d I_{2}}{d z}=-\eta I_{1} I_{2} \quad 0\left(\alpha \operatorname{Im} \mid x^{(3)}\right) \\
& \frac{d I_{1}}{d d z}=+\eta I_{1} I_{2}
\end{aligned}
$$

(2) Another process that may result in absoppter of $\omega_{2,1}$ and gain in $\omega_{1,2}$ is the 4-photon parametric process:

2. SHG (25 points)

Consider GaAs crystal in a SHG process (see attached data sheet). The orientation of the input field at ω is given by $E(\omega)=E_{0}(\cos (\phi) \hat{x}+\sin (\phi) \hat{y})$ propagating along the z-axis (c-axis) of the crystal
(a) Obtain $\mathrm{d}_{\text {eff }}$ vs. ϕ and find optimum ϕ ?
(b) For a fundamental wavelength of $\lambda=2 \mu \mathrm{~m}$, plot relative SHG signal vs. sample thickness L (for $0<\mathrm{L}<2 \mathrm{~mm}$). Identify the minimum thickness that gives the highest efficiency.
(c) Discuss the possible phase matching technique(s) for this crystal.

$$
E(\omega)=E_{0}(\cos \varphi \hat{x}+\sin \varphi \hat{y})
$$

(a)

$$
\begin{gathered}
d: \hat{e}_{1} \hat{e}_{2}=\left(\begin{array}{ccccc}
0 & 0 & 0 & d_{36} & 0 \\
0 & 0 & 0 & 0 & d 36 \\
0 & 0 & 0 & 0 & 0 d 3
\end{array}\right)\left(\begin{array}{c}
c_{03}^{2} \varphi \\
\operatorname{sen}^{?} \varphi \\
0 \\
0 \\
0 \\
22 \cdot \varphi 6 \varphi!
\end{array}\right)= \\
=\left(0,0,2 d_{36} \sin \varphi \operatorname{cac} \varphi\right)
\end{gathered}
$$

(b)

$$
P_{3}(2 \omega)=2 d_{36} \sec \varphi \cos 9=d_{36} \sin 2 \varphi .
$$

max when $\varphi= \pm \frac{\pi}{4}, \pm \frac{3 \pi}{4}$.
Nore: $2 n$ practic, this would not wak as $\vec{P}=P(z a)^{\hat{z}}$ is longitudinal. But, ine assuma it does!!

$$
\begin{aligned}
f_{c}^{\prime}=\frac{\pi}{\frac{4 \pi}{\lambda}(n(2 \omega)-n(w))}=\frac{\lambda}{4(n(2 w)-n(w))} & =\frac{2 \mu .}{4(n(1 \mu)-n(c / \omega))} \\
& \approx 3.13 \mu \mathrm{~mm}
\end{aligned}
$$

(C) Quadi phase matc hirg \square or

3. NLO susceptibilities: resonances and selection rules ($\mathbf{3 0}$ points)

A fictional molecule has the following energy levels. Draw the spectrum (for $0<\hbar \omega<8$ eV) for the (a) linear absorption coefficient α, (b) two-photon absorption (TPA) coefficient β, (c) SHG: $\left|\chi^{(2)}(2 \omega ; \omega, \omega)\right|$ and (d) THG: $\left|\chi^{(3)}(3 \omega ; \omega, \omega, \omega)\right|$.

Be quantitative in your x-axis. Assume a finite broadening in your drawings. Point out the resonances (diagrammatically) on your graph for each case and show the relative strengths if obvious. Note: no calculations needed for this problem.

(3)

$$
\left.x^{(1)}\right] \quad x^{(2)}=0
$$

GaAs Data:

Refractive Index (isotropic):

From table 1.5.3 and Fig. 1.5.3 (in Boyd) $d_{i j}$ for $\overline{4} 3 m$ is:
$\left(\begin{array}{llllll}0 & 0 & 0 & \bullet & 0 & 0 \\ 0 & 0 & 0 & 0 & \bullet & 0 \\ 0 & 0 & 0 & 0 & 0 & \bullet\end{array}\right) \quad\left(\overline{4} 3 m\right.$ point group, with $\left.\mathrm{d}_{36}=370 \mathrm{pm} / \mathrm{V}\right)$.

