

Nonlinear Optics

Course Homepage

Instructor: Mansoor Sheik-Bahae

Office: Physics & Astronomy Rm. 1109 (North Wing) Phone: 277-2080, Fax: 277-1520 e-mail: msb@unm.edu

Office Hours: Thu, 2-3 pm or by appointment

The final grade is weighted as follows:

Midterm Exam: 45% Final Project (paper + presentation): 40% Homework: 15%

http://www.optics.unm.edu/sbahae/physics568/index.htm

TA: Junwei Meng (Tiger)

Course Syllabus

- ✤ Introduction (*historical overview*, *applications of NLO*)
- Nonlinear Susceptibilities ($\chi^{(2)}$ and $\chi^{(3)}$ processes, nonlinear refraction and absorption)
- Classical Anharmonic Oscillator Model
- Properties of Nonlinear Susceptibilities (symmetries, Kramers-Kronig dispersion relations)
- Wave Propagation in NLO Media (coupled amplitude equations for χ⁽²⁾ processes, phase matching, second harmonic generation, sum and difference frequency generation, optical parametric processes, cascading nonlinearities)
- Quantum Mechanical Treatment of Nonlinear Susceptibilities
- χ⁽³⁾ Processes (electronic, vibrational and rotational effects, optical Kerr effect, selffocusing, wave-mixing, bistability, phase-conjugation, beam coupling, solitons)
- Photo-Refractive Nonlinearities
- Stimulated Light Scattering (stimulated Raman, Brillouin, and Rayleigh scattering)

Recent advances in ultrafast NLO (high-harmonic generation, atto-physics, terahertz)

What is Nonlinear Optics?

Two light beams cross without any interaction (linear optics) $\vec{P} = \chi \varepsilon_o \vec{E}$

Light beams interact with each other, or themselves (nonlinear optics)

Primary Manifestations:

- sum, difference, harmonic frequency generation (new frequencies)
- modulating refractive index and absorption coefficient (e.g. $n = n_0 + n_2 I$)

 $\alpha = \alpha_0 + \beta I$

54th Anniversary of Nonlinear Optics

1961: NLO was born!

FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonic. The wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced by the second harmonic. The image of the primary beam at 6943 A is very large due to halation.

52nd Anniversary of Nonlinear Optics

Have you seen SHG?: Green Laser Pointer

52nd Anniversary of Nonlinear Optics

1961: NLO was born!

Two-photon microscopy

Theoretical Foundations

Maria Goeppert-Mayer (June 28, 1906 – February 20, 1972)

Two-photon absorption theory (1931, doctoral dissertation)

Awarded the Nobel Prize in Physics in 1963, shared with J. Hans D. Jensen and Eugene Paul Wigner.

Theoretical Foundations

Nicholas Bloembergen 1962,..

Nobel Prize in Physics, 1981

(July 2011) in Hawaii!

Femtosecond Lasers, Frequency Combs and Optical Clocks

OPTICAL SCIENCE & ENGINEERING University of New Mexico

Extreme Nonlinear Optics (X-ray bursts, attosecond pulses, and laser fusion)

Other historical perspectives

Faraday Effect (magneto-optic) - 1845:

 $\theta = V \times B \times L$

V is the Verdet constant

✤ Kerr Effect- 1875:

$$\Delta n = \lambda K E^2,$$

Pockels Effect- 1893:

$$\Delta n = r \cdot n^3 E$$

Michael Faradav

John Kerr

Friedrich Pockels

Other References

Handbook of Nonlinear Optics *Richard Sutherland*

Photonics: Optical Electronics in Modern Communications *Amnon Yariv and Pochi Yeh*

Fundamentals of Nonlinear Optics *Peter Bowers*

