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Nonlinear optics in ultra high Q microcavity 
Term paper for Phy 566 Nonliear Optics by Shoufeng Lan 

 

1. Introduction 

Optical microcavities are used to confine light both spatially and temporally. The long 
photon lifetimes and small mode volume of ultra-high-Q microcavities, allow to 
significantly reduce the threshold for nonlinear phenomena. Early work recognized 
these attributes through many stimulated nonlinear phenomena, such as stimulated 
Brillouin scattering[1], stimulated Raman scattering[2] and cascaded Raman 
scattering[3] in liquids formed from Raman active media such as CS2. However, due 
to the inefficient nature of free space laser excitation used in these experiments, as 
well as due to the transient nature of the microdroplets, they required high threshold 
pump powers and did not allow stable and long term study of nonlinear optical 
effects.  
 
In this paper, we report a micrometer-scale nonlinear Raman source using a 
taper-fiber coupled silica microsphere. The Raman scattering has a highly efficient 
pump-signal conversion (higher than 35%) in this case and pump thresholds nearly 
1000 times lower than shown before. This reduction of necessary pump power is due 
to the efficient and optimum coupling to ultra-high-Q optical modes. This allows the 
authors to observe stimulated Raman scattering at threshold levels as low as 65µW, 
which is usually considered the regime of linear optics. Due to the high conversion 
efficiency the internal Raman fields can reach power levels which are sufficient to 
generate higher order Raman fields. In addition, geometrical control of recently 
develop toroid micocavities enables a transition from stimulated to optical parametric 
oscillation regimes. So we report a fiber coupled toroidal microcavity as a parametric 
oscillator [4] as well.  

2. Theoretical analysis 

2.1 Optical modes in fiber coupled microcavities 

The optical modes of a spherical dielectric particle can be calculated by solving 
Helmholtz equation in spherical coordinates. The field distribution and the resonance 
locations are determined by matching the solutions interior and exterior to the sphere 
at the dielectric-air boundary[5], leading to a characteristic equation. For a 
microsphere this requires matching the Bessel function jl(ka) and the outgoing Hankel 
functions hl(ka) at the dielectric boundary. The characteristic equation for this case is 
given by:  

 
On the other hand, the optical modes of a tapered optical fiber can be approximated 
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by the modes of a dielectric cylinder. Particularly important in the context of taper 
fiber coupling is the fraction of energy which is outside the tapered fiber. With slowly 
varying envelope approximation, the coupling from a resonator to a waveguide is 
fundamentally described by three parameters, the resonant frequency ω0, the decay 
rate 1/τ 0 of the mode due to internal cavity losses, and the cavity decay rate 1/τ ex due 
to coupling to the waveguide mode. 
 
2.2 Raman scattering in fiber taper coupled microcavities 
In the conventional treatments, the pump and Raman waves are assumed to be plane 
waves, with only one spatially varying variable, simplifying considerably the coupled 
wave-equations. In the case of a microcavity, the fields involved are the 
whispering-gallery modes. By reformulating the wave-equation one arrives at a 
similar set of equations as in the case of plane waves, however with modified 
coupling coefficients, which take into account the coupling among different 
WG-modes. This treatment leads to the definition of overlap factors (or alternatively 
stated to the definition of the effective mode area, or effective mode volume). The 
plane wave interaction in the terms of the electric field is described by: 

 

In these equations the bulk Raman gain coefficient is given by gR and is well known 
for silica fibers. Reform the eqatuions with a WGM in the waveguide coupled 
microcavity, we can simplify the equation as follow. We assume that the pump 
wavelength and the Raman wave are on resonance and use the slowly varying 
envelope approximation. 

 

Here ‘A’ signifies the slowly-varying amplitude of the pump and Raman WGM of the 
cavity and denotes the input wave. The excitation frequency of the pump mode and 
resonant Raman mode is given by ωR and ωp and τ is the total lifetime of photons in 
the resonator, which is related to the quality factor by Q = ω · τ The coupling 
coefficient κ =(1/τ ex)

1/2denotes the coupling of the input pump wave s to the cavity 
whispering-gallery-mode [6]. The Raman intra-cavity gain coefficient is denoted 
as C

Rg , which is related to the more commonly used gain coefficient gR (measured in 
units of m/Watt) by integration over the mode area. 
 
The first Raman field can itself act as a secondary pump field and generate further 
Raman modes. This process of cascaded Raman scattering can be described by 



 3

including higher order coupling terms into the coupled mode equations of pump and 
Raman fields as shown below 

 
The general solutions for the threshold of the even and odd order Nth Raman modes 
are given by the following expressions. 

 
2.3 Optical parametric oscillator in fiber taper coupled microcavities 
Optical parametric oscillators (OPOs) rely on energy and momentum conserving 
optical processes to generate light at new “signal” and “idler” frequencies. In WG 
type resonators, such as microtoroids, momentum is intrinsically conserved when 
signal and idler angular mode numbers are symmetrically located with respect to the 
pump mode (i.e. lS, lI=lP±N) 

 

Energy conservation ( ISP ωωω hhh +=2 ), on the other hand, is not expected to 
be satisfied a priori, since the resonant frequencies are, in general, irregularly spaced 
due to both cavity and material dispersion. As a result, the parametric gain is a 
function of the frequency detuning, 

 

which effectively gives the degree to which the interaction violates strict energy 
conservation. In the case of silica, the material dispersion of silica in the 1500 nm 
band leads to a positive detuning frequency. It can be shown that the existence of 
parametric gain requires that this detuning be less than the parametric gain 

bandwidth[7] Pn
c γ4=Ω (

effA

n
c

2ωγ = )where n2 ≈ 2.2 × 10−20 m2/W is the 

Kerr nonlinearity for silica [8] and P is the circulating power within the micro-cavity. 
The effective nonlinearity γ depends on inversely on the effective cross section of the 
mode. By equating parametric gain and micro-cavity loss (as determined by loaded Q 
factor), the threshold pump power necessary in the waveguide is obtained for 
parametric oscillation. 

 

To bring about the condition 0 < ∆ω < Ω a reduction of the toroidal crosssectional 
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area reduces the modal effective area Aef f and produces a two-fold benefit. First, it 
increases the parametric bandwidth Ω through its dependence on γ [7] and second, it 
reduces ∆ω. 

4. Result spectrums for Raman scattering in microcavities 

 
                    (1)                                    (2) 

Figure 2.1: (1)Single longitudinal mode Raman lasing. Raman spectrum for a 40 

mm diameter microsphere. (2) Cascaded Raman scattering in a 58µm diameter 

microcavity. The insets show the pump-to-Raman conversion for first (left inset) 

and second order (right inset) Raman modes (measured on different 

microcavities). Solid lines: A theoretical fit. 

 
Stimulated Raman oscillation was observed by pumping a single WGM and 
monitoring the transmission using an optical spectrum analyzer. Once the threshold 
for SRS was exceeded, lasing modes in the 1650 nm band could be observed, in 
correspondence with the peak Raman gain which occurs down-shifted in frequency by 
approximately 14 THz relative to the pump frequency (wavelength shift of 
approximately 110 nm). The presence of Raman scattering in microspheres leads to 
the possibility of generating higher order Raman modes by cascade. By using a 
shorter pump laser (located at around 1450 nm) cascaded Raman scattering was 
indeed observed. Figure 2.1(2) shows a typical cascaded Raman spectrum, with a 
second order Raman mode appearing in the 1650 nm band, two phonon frequencies 
shifted from the pump. The pump-to-Raman conversion characteristics for first order 
Raman scattering and the 2nd order Raman mode are shown in the inset. It can be 
seen that the first order mode does indeed exhibit a square-root dependence on the 
launched pump power. The 2nd order Raman mode, in contrast, exhibits the expected 
linear increase with pump power. 
 
As stimulated Raman scattering does not depend on the detuning frequency (i.e. it is 
intrinsically phase-matched), it is the dominant nonlinear mechanism by which light is 
generated for large detuning values. With decreasing ∆ω, a transition from stimulated 
to parametric regimes occurs when the threshold for parametric oscillation falls below 
that for Raman (The peak parametric gain is larger than the peak Raman gain, 

Max
R

Max
Kerr gg 2≈  [8] ). Also note that for increased waveguide loading (and hence 
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 (1) (2) 

Figure 10.3: (1)Nonlinear processes in a microcavity with D=50µm, d=4µm and 

Q0=108. (2)Parametric-oscillation spectrum measured for a 67 µm diameter 

toroidal microcavity.  

correspondingly higher threshold pump powers) the transition can be made to occur 

for detuning values that are progressively larger. For Figure 10.3 (2), the pump is 

located at 1565 nm and power levels are far above threshold. The signal and idler are 

modes with successive angular mode numbers and are spaced by twice the free 

spectral range (2×7.6 nm). The subsidiary peaks (denoted I’,S’) only appeared at high 

pump powers and are due to a combination of nonlinear effects, such as parametric 

oscillation (of signal and idler) as well as four-wave-mixing involving the idler, pump 

and signal. Inset: idler emission power plotted versus the signal emission power, 

recorded for different pump powers. The idler-to-signal power ratio is 0.97±0.03. For 

higher pump powers deviation is observed due to appearance of secondary oscillation 

peaks (I’,S’) (compare with main figure). 
 

5. Summary 

In summary, first order and cascaded Raman scattering in microspheres are discussed 
in waveguide-coupled microcavities. A theoretical analysis was presented using the 
coupled mode equations for the pump and Raman WGMs. Using these equations, the 
threshold condition for stimulated Raman scattering was derived. This analysis 
revealed that odd and even order Raman lines exhibit different pump-to-Raman 
emission characteristics. Even order Stokes fields are found to exhibit a linear 
increase in generated Raman power as a function of pump power, whereas odd-order 
Stokes fields exhibit a square root dependence. Optical parametric oscillation in high 
Q microtoroid is reported as well. By using the geometric of microtoroid, which has 
much more confined mode area, the phase matching condition for OPO was satisfied. 
The author claimed that it is observed for the first time Kerr-nonliearity induced OPO 
in a microcavity.    
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