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1 Introduction and Motivation

Imaging using entangled photons is a very interesting phenomenon, [1], and it
throws light into the fundamental aspects of quantum mechanics itself. Spon-
taneous parametric down conversion (SPDC) is a powerful tool for generating
these entangled states. In SPDC, an intense laser beam, called the pump, is
incident upon an anisotropic crystal. The pump is intense enough so that the
nonlinear effects lead to conversion of a pump photon into a pair of correlated
or entangled photons also called biphotons. The reason for this entanglement
in spatial and spectral domains is the conservation of energy and momentum
for each photon pair. The entangled photons can be generated in two possible
configurations, type I and type II. In type I phase matching, both the signal
and idler photons have parallel polarizations and in type II configuration, the
signal and idler photons have perpendicular polarizations. In either case, the
following phase matching conditions must be valid:

ωp = ωs + ωi, (1)

kp = ks + ki, (2)

where subscripts p, s and i stand for pump, signal and idler respectively. These
are the enegery and momentum conservations of the photons concerned and the
basis for entanglement of the signal and idler photons. We will see how there
entangled photons provide a way to image an object without seeing it.

For example, as illustrated in Fig. 1, consider a 3-D object placed within a
chamber that has an opening through which light enters but does not escape,
[2]. The wall of the chamber is coated with a photosensitive surface and serves
as an integrating sphere that converts any photon reaching it into a photoevent.
The chamber therefore serves as a photon bucket that indiscriminately detects
the arrival of photons at any point on its surface, whether scattered or not,
but is totally incapable of discerning the location at which the photon arrives.
Classically, whatever the nature of the light source or the construction of the
imaging system, it is impossible to construct a hologram of the 3-D object in
this configuration. This is because optical systems that make use of classical
light sources, even those that involve scanning and time-resolved imaging, are
incapable of resolving the ambiguity of positions from which the photons are

1



Figure 1: Figure showing the working of Quantum holography. S is a source
of entangled-photon pairs, for example a nonlinear crystal. C is a (remote)
single-photon-sensitive integrating sphere that comprises the wall of the cham-
ber concealing the hidden object (bust of Plato). D is a (local) 2-D single-
photon-sensitive scanning or array detector. h1 and h2 represent the optical
systems that deliver the entangled photons from S to C and D, respectively.
The quantity, p2(x2) is the marginal coincidence rate given by Eq. (24), which
is the hologram of the concealed object. Figure taken from [2].

scattered; they therefore cannot be used to form a coherent image suitable for
holographic reconstruction. The implementation of quantum holography makes
use of entangled-photon beams generated. As shown in Fig. 1, one beam from
the source S enters the chamber opening and is scattered from the object, yield-
ing a single sequence of photoevents from the integrating sphere C. The other
beam is transmitted through a conventional optical system and detected us-
ing a single-photon-sensitive scanning (or array) detector D. The information
registered by the two detectors, in the form of coincidence counts, is sufficient
to extract coherent information about the 3-D object that is suitable for holo-
graphic reconstruction.

Even though most aspects of ghost imaging can be understood classically
with thermal or pseudo-thermal light sources, ghost imaging performed with
entangled photons can show intrinsically quantum features such as imaging in
either near or far field, violating Bell inequalities. In this paper we will not
debate whether there is a need for quantum entanglement to perform correla-
tion imaging, but we will try to understand how the spontaneous parametric
downconversion results in an entangled state and how this entangled state is
able to perform ghost imaging. We will look into some correlation functions
proposed by Glauber to understand the coincicence counts at the two detectors.
Finally, we will see how we can apply these correlation functions to perform and
understand various imaging system configurations.
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2 Brief Theory of Spontaneous Parametric Down
Conversion

To understand how SPDC generates entangled photons, we need to look into
the quantum picture and quantized fields. Consider an electric field operator
E(rt) and its seperation into positive and negative frequency parts. The field
operator has the following Fourier representation:

E(rt) =

∫ ∞
−∞

e(ω, r) exp−iωt dω, (3)

where e(−ω, r) = e†(ω, r). Now, we can write the positive frequency part of E
as

E(+)(rt) =

∫ ∞
0

e(ω, r) exp−iωt dω, (4)

and the negative frequency part as

E(−)(rt) =

∫ 0

−∞
e(ω, r) exp−iωt dω, (5)

=

∫ ∞
0

e†(ω, r) expiωt dω. (6)

From the way the positive and negative frequency parts are defined we have
E = E(+)(rt) + E(−)(rt), and E(−)(rt) = E(+)†(rt). We can show that the
positive frequency part, E(+)(rt), is associated with photon absorption, that
is, with the annihilation operator and the negative frequency part, E(−)(rt), is
associated with photon emission, that is with the creation operator. With the
help of these operators we can now write the Hamiltonian, [3], for the nonlinear
interaction term, for type II configuration, as

H = ε

∫
V

d3rχE(+)
p E(−)

o E(−)
e +H.c., (7)

where V is the volume of the crystal illuminated by the pump laser Ep, Eo and
Ee correspond to the ordinary ray and the extraordinary ray, respectively, χ
is the nonlinear electric susceptibility tensor, and H.c. means the Hermitian
conjugate. As we can see from Eq. (7), one pump photon is destroyed and two
photons are created in this downcoversion process. The Hermitian conjugate
term has the reverse process, that it, two photons will be destroyed and a sum
frequency photon will be generated.

From first order perturbation theory, we can express the state in terms of
the Hamiltonian as as

|Ψ〉 = |0〉 − i

~

∫
dt H|0〉. (8)

Using the Hamiltonian given by Eq. (7), the two photon state at the output
surface of the crystal can be written as

|Ψ〉 = |0, 0〉+
∑
ko,ke

Fko,ke
a†oko

a†eke
|0, 0〉, (9)
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where Fko,ke is proportional to pump amplitude, E0, δ(ωoko + ωeke − ωp) and
h(ko + ke − kp). Note that h is not a delta function because of the finite length
of the crystal. As we can see from Eq. (9), the two photon state is entangled
because it can not be written in term of a simple product of two individual
photon states. The coupling happens in the δ funtion and the h function.
The first term is just the vaccum state and can be ignored for coincidence
count measurements. The form of the equation gives us an idea of the general
entangled state and in the following section, we will qualitatively see why an
entangled state offers an advantage in overcoming the limitations of uncertainity
relations imposed on separable states.

3 Entangled versus separable systems

We know that the position, x, and momentum, p, form a conjugate pair and
their variances are limited by the uncertainity relation:

∆x∆p ≥ ~. (10)

As we are interested in the relative position and the sum of the momentum for a
system of two photons, entangled and separable, we will study the corresponding
uncertainity relations for both entangled and separable systems. Motivated by
Eq. (9), consider the following pure state for a two-particle system entangled in
momentum variables (p1, p2), [4],

|Ψ〉 =

∫ ∫
dp1 dp2 Ã(p1 + p2)C̃(

p1 − p2
2

)|p1, p2〉, (11)

with the assumption that standard deviation (σA) of Ã is much smaller than
the standard deciation (σC) of C̃. We can then write the probability amplitudes
in position and momentum representations are given by:

P (x1, x2) = A(
x1 + x2

2
)C(x1 − x2) (12)

P̃ (p1, p2) = Ã(p1 + p2)C̃(
p1 − p2

2
) (13)

Note that (p1 + p2, (x1 + x2)/2) and ((p1 − p2)/2, x1 − x2) are pairs of Fourier
conjugate variables whereas (x1−x2) and (p1 +p2) are not. As a result we have

∆(p1 + p2) = σA � ∆p12, (14)

∆(x1 − x2) =
~
σC
� ∆x12, (15)

where ∆p12 = 1/2
√
σ2
A + σ2

C and ∆x12 = ~/(2σAσC)
√
σ2
A + σ2

C are the mini-
mum uncertainities associated with each particle of the entangled system. Since
(x1 − x2) and (p1 + p2) are not conjugate to each other, their variances can be
indefinitely small even though the indicidual uncertainities can be large, and an
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increase or decrease of one does not affect the other. Therefore, entangled two-
particle states may give rise to comepletely independent uncertainties for total
momentum and relative position. On the other hand, for systems of independent
quanta, we have the following relations;

∆(p1 ± p2) =
√

∆p21 + ∆p22,

∆(x1 ± x2) =
√

∆x21 + ∆x22, (16)

where ∆pj , ∆xj are the uncertainities in momentum and position with the
particle j (j = 1, 2). The uncertanity principle will therefore, result in the
following relation for variances of (x1 − x2) and (p1 + p2)

∆(x1 − x2)∆(p1 + p2) ≥ ~. (17)

Even though (x1 − x2) and (p1 + p2) are not Fourier-conjugate variables, for
independent quanta, the inequality (17) must hold. This means any attempt to
reduce the uncertainity in joint momentum of the two particles will automati-
cally cause an icrease in error for the joint measurement in position.

Till now we looked qualitatively why the entangled state provides an ad-
vantage over the independent quanta in terms of uncertainity relations. To
quantitatively study the correlations among the fields at the two detectors, we
need to find the field correlations at the two detectors for the two photons. In
this regard, we will look into G(2) function proposed by Glauber, [5], in the
following section.

4 Field Correlations

The properties of system of photon pairs can be understood with the help of
coincidence between two spatially separated single-photon detectors. Rate at
which a detector records photons is proportional to 〈i|E(−)(rt)E(+)(rt)|i〉, when
the initial state of the field is |i〉. This is the probability per unit time that a
photon will be absorbed by an ideal detector at point r and time t. When we use
two detectors situated at different points r and r′ to detect photon coincidences
or more generally, delayed coincidences, the probability for such a detection
is given by 〈i|E(−)(rt)E(−)(r′t′)E(+)(r′t′)E(+)(rt)|i〉. When we dont have a
complete knowledge of the state of the field, we look into the density operator,
ρ̂, which specifies the system in terms of probabilities. The expectation value of
an observable, Ô whose state is not known, can be obtained by averaging over
the probability of states. The resulting average can be written as tr{ρ̂Ô}. If the
fields E(−) and E(+) are evaluated at different points then we get a measure for
the correlations of the complex fields at seperated positions and times. Then
the correlation function for field can be written as

G(1)(rt, r′t′) = tr{ρ̂E(−)(rt)E(+)(r′t′)}. (18)
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In a similar fashion, generalizing the photon coincidence rate, we get the second-
order correlation function,

G(2)(r1t1, r2t2, r3t3, r4t4) =

tr{ρ̂E(−)(r1t1)E(−)(r2t2)E(+)(r3t3)E(+)(r4t4)}. (19)

For our purposes, we just look into rate of coincidence counts at two detec-
tors, so that Eq. (19) becomes

G(2)(r1t1, r2t2) =

tr{ρ̂E(−)(r1t1)E(−)(r2t2)E(+)(r2t2)E(+)(r1t1)}. (20)

Since we have the entangled state wave function from Eq. (9), we can calculate
the rate of coincidence from Eq. (20). We can also compute marginal coinci-
dence rates and conditional coincidence rates which can be used to measure the
resolution of a particular imaging system. We will now look into the general
formalism to do such calculations.

5 Fourier Optics

Consider the situation depicted in Fig. 5, [6], where the pump beam illuminates
the nonlinear crystal (NLC), and the signal and idler beams are measured by
the single-photon detectors D1, placed at x1 and D2 placed at x2, respectively.
We assume throughout a planar source and a one-dimensional geometry in the
transverse plane for the sake of simplicity. The time dependence in the G(2)
function can be dropped as a result and the coincidence rate of photon pairs at
the two detectors D1 and D2 is given by

G(2)(x1, x2) = |ψ(x1, x2)|2, (21)

where the biphoton amplitude ψ(x1, x2) is

ψ(x1, x2) =

∫
dx Ep(x)hs(x1, x)hi(x2, x). (22)

The two functions hs and hi are the impulse-response functions for the signal
and idler beams and Ep(x) is the spatial distribution of the pump field at the
crystal entrance. The relation Eq. (22) can be obtained by substituting the pure
entangled state given by Eq. (9) into the G(2) function given by Eq. (20). We
will need the following additional relation which relates the positive frequency
part of the field, E(+)(x) at the detector plance to the annihilation operator, a,
at the source plane of the crystal in terms of the impulse response function:

E(+)(x) =

∫
h(x, x′)a(x′)dx′. (23)
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Figure 2: Figure showing the biphoton imaging, see text for details. Figure
taken from [6].

Once we have the G(2) function, we can now define two other correlation
functions, the marginal coincidence rate, I(2)(x2), and the conditional coinci-

dence rate, I
(2)
0 (x2)

I(2)(x2) =

∫
dx1 G

(2)(x1, x2), (24)

I
(2)
0 (x2) = G(2)(0, x2). (25)

The marginal rate, I(2)(x2), gives us the rate at which D2 detects a photon at

x2 when D1 detects a photon at any location. The conditional rate, I
(2)
0 (x2),

gives us the rate of detecting at photon at x2 by D2 when a photon is recorded
by D1 at position, x1 = 0. If we assume an object in the signal path, then by
considering a delta function to be the object,we can measure the resolution of
the imaging system.

With this formalism we can now measure resolution of biphoton imaging
and also study various imaging configuration that are possible.

6 Summary

In this term paper, we looked into quantum imaging made possible by the
entangled-photon pair generated by a SPDC process. We briefly looked into
the theory of SPDC and then qualitatively understood the advantage of using
an entangled pair over individual photons for imaging in terms of uncertainity
relations. For quantitatively understanding the correlations between the fields,
we looked into the coincident rates and then looked into the general framework
to apply the coincidence rates for practical imaging situations.
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