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Abstract: In this report generation of solitons and different types of it has been 

introduced. Wide applications of solitons in studying light and matter interaction 

in ultra-fast time scales and in very small dimensions has captured a lot of 

attention. FDTD numerical simulation has been implemented to verify the special 

features of soliton while propagating in a kerr-type nonlinear medium.  
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1. Introduction 

Beams of light tend to diverge in space while propagating. This is not limited to light waves, but 

water waves and any other wave phenomena can experience such broadening called 

“diffraction”. However, waves that keep their shape invariant while propagating do exist in the 

nature and are called “Solitons”. Solitons were first illustrated in water waves in front of a boat 

by John Scott Russel in 1834. In optics solitons can be seen in the form of temporal solitons in 

fiber optics, spatial solitons, spatiotemporal solitons, and other various complex kind of it like 

discrete soliton and cavity solitons [1]. Temporal solitons are very important in fiber optic 

communication as they do not experience broadening caused by group velocity dispersion 

(GVD) while propagating in long distance. Spatiotemporal solitons (STS), are as a result of a 

balance in the interplay between diffraction, GVD, and nonlinear processes in high intensity light 

pulses. These particlelike states of light sometimes called “light bullets” are interesting for their 

applications in studying the light and matter interaction in ultra-fast time scales and very small 

dimensions. Fig. 1 compares a spatiotemporal soliton with a diffracting and dispersing pulse. 



 

 

Starting form Maxwell equations assuming paraxial approximation and slowly varying envelope 

approximation (SVEA) one can derive the nonlinear Schrödinger equation for a kerr nonlinearity 

as follows below:  

 

Where z is the propagation direction, k is the wave vector, and � is the slowly-varying amplitude 
of the electric field. One the best family of solutions are sech functions as follows below,  
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� . It can be seen that the intensity of the 

propagating wave is independent to z. Stability of such solutions are also important in order to 

consider it as a soliton. 

The above solution can be a result of any wave phenomena in the nature following a nonlinear 

equation in a general format of, 
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Where !" is the differential operator describing the linear diffraction and $" is the nonlinear 
operator that governs the effects of nonlinear medium (self-phase modulation). When these two 

cancel each other we would have a soliton. Table 1 summarizes some examples of solitons 

Fig. 1. Illustrating the energy density of a diffracting and dispersing pulse compared to a spatiotemporal soliton (STS) [2] 



governed by this equation: Optical spatial soliton, fiber solitons, surface waves in water, and 

superfluids; 

 

 

 

2. FDTD Numerical Simulation 
 

Fig. 2. Different examples of solitons [1] 



In order to study the propagation of fields in these nonlinear medium and to verify the specific 

features of solitons the electromagnetic wave equation have been implemented numerically. In 

particular, here I rederived the FDTD numerical simulation of the soliton investigated in [3]. 

In 1-D FDTD the Maxwell equation derivatives are replaced by central differencing and hence 

become as below, 

 

Here, a 2-D FDTD for the kerr type nonlinear medium was implemented. The resulting field 

overlay illustrated in Fig. 3 shows the spatial soliton propagating through the nonlinear medium.  

 

  

This section would be detailed more in the presentation. 

Fig. 3. Single spatial soliton propagation implemented with FDTD. This has been first done by [3] 



Appendix: FDTD field updates, MATLAB code 

 
% Source 
% Propagating sinusoidal beam 
n0=2.46; 
n2=1.25e-18; 
fc=4.31e14; 
Ip=6.87e8;          % changed the amplitude (e9 to e8)!!! 
FWHM=0.65e-6; 
  
Lambda=c/fc;                
dx=Lambda/10;               % spatial step size 
dy=dx; 
T_step_bound=1/(c*sqrt(1/(dx^2)+1/(dy^2))); 
dt=T_step_bound*1.00; 
  
Ca=1;                       % Coefficients 
Cb=dt;                       % for one medium 
Da=1; 
Db=dt/mu0; 
  
% sweeping over time and spatially for 
% propagating field components 
for n=1:nmax 
    
    for j=1:jmax+1 
        for i=2:imax 
            Hy(i,j)=Da*Hy(i,j)+Db*((Ez(i,j)-Ez(i-1,j))/dx); 
        end 
    end 
    for j=2:jmax 
        for i=1:imax+1 
            Hx(i,j)=Da*Hx(i,j)+Db*(-(Ez(i,j)-Ez(i,j-1))/dy); 
        end 
    end 
    for j=2:jmax-1 
        for i=2:imax-1 
            Dz(i,j)=Ca*Dz(i,j)+Cb*((Hy(i+1,j)-Hy(i,j))/dx-((Hx(i,j+1)-
Hx(i,j))/dy)); 
            % Source             
            Envelope=sech(2.634*(j-jmax/2)*dy/FWHM); 
            Ez(1,j)=Envelope*Ip*sin(2*pi*fc*n*dt); 
        end 
    end 
     
… 
 
end 


