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Abstract- In this paper, I tried to provide a mathematical model to describe the time dynamics of injection tuning 

of the optical parametric oscillators. This model can account for all modes under the gain profile of the oscillator. 

It is shown that the injected mode and the fastest growing mode are the main participants in the time dynamics of 

injection tuning of the OPO’s. A set of prescriptive criteria is developed for successful injection tuning. 

 

Recently, much attention has been paid to the construction of tunable lasers, particularly to the 
optical parametric oscillator (OPO), whose emission frequency can be varied continuously. But it 
seems difficult to control the spectral output of the OPO, considering many modes can be 
stimulated by the pumping source. One method of accurately controlling the spectral output of an 
OPO is by “injection tuning”. This technique makes it possible to control the output frequency of 
a high-powered pulsed singly-resonant OPO by injecting into the oscillator cavity low-powered 
radiation from a frequency controlled source, such as LED.  

The experimental situation is as follows: a nonlinear optical crystal is placed within an 

optical resonator. A “pump” field at pω is then fed into the resonator. It is easy to understand that, 

above a threshold pumping pump intensity, oscillation is set up simultaneously at N pairs of 

frequencies 1nω  and 2nω . The generalized equations for the amplitudes: , , and for 

the pump mode, the nth signal mode, and the nth idler mode, respectively, are written as follows: 
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where 12 −nω  and n2ω are the frequencies for the nth signal and idler modes satisfying: 

nnp 212 ωωω += − , and are the signal and the idler cavity-Q factors, taken to be the same 

for all N modes. The coupling constant for the nth mode is given 

by
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For numerical solutions, it is easier to handle the equations in a dimensionless form. Thus, 

the coupling constants were normalized to that ( ) of the mode with the maximum gain, so maxK



that max/ KKnn =η  represents the normalized coupling constant of the nth mode. The mode 

amplitudes were all normalized to the threshold value for the pump , which is the pump mode 

amplitude at the threshold of growth for the fastest growing mode. The time scale was normalized 

to the decay time for the pump
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== . And we use pthp λλβ /= to represent the pump 

driving term normalized to the threshold driving magnitude pthλ . Then we can transform the 

equations (1), (2), (3) into dimensionless forms and solve them to get the final solutions in the 
form of dimensionless parameters. 

Two graphs for two similar situations are shown below: 

 

 

In Fig.3, an N=3 case, the injection is on signal mode , which along with signal mode , is 

a non-maximum-gain mode. The maximum-gain signal-idler pair are labeled and  and 

correspond to perfect phase-matching
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consider only 3 pairs ( , . With1a ),(),,(), 65432 aaaaa β =2, this results in a gain rate for signal 

 which is insufficient to reach the quasi-steady state of successful injection. The reason is that 

there is no period of time in which we can expect the pure frequency

5a

5ω output. It is to be noted 

that the mode , being neither the injected mode nor the maximum-gain mode, never rises 

enough above noise even to appear on the scale of Fig.3. 
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The “unsuccessful” injection for the oscillator parameters of Fig.3 can, however, be made 

“successful” by elevating the pump driving termβ , which is a measure of the field strength of the 

pumping laser. Fig.4 shows the injection operation which is successfully achieved by increasing 

β to 7. In contrast to the previous case, higher pump drive here results in the injected mode  

rising rapidly to deplete the pump before the maximum-gain mode catches up and the final 

steady state is approached with 
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.1=pa This prescription for achieving successful injection by 

increasing β  was not, however, found effective in any case where injection was attempted on a 

mode having a relative coupling constant )( nη  less than about 0.6. 

 

In Fig. 5 is shown a more realistic multimode case with N=13.This is a case of successful 

injection, where the injected mode ( ) has a relative coupling constant 25a 13η =0.73 and a pump 

strength ofβ =3. The curves labeled with two modes represent modes whose frequencies are 



disposed symmetrically on either side of the maximum-gain mode, and thus these modes have 
identical gain constants. The injection tuning in Fig.5 are characterized by time intervals during 
which the various mode amplitudes are either constant or are nearly pure exponential growth. 

Here, we divide the dynamics for four time intervals ,,,0 32211 TTTTTTTT ≤≤≤≤≤≤ and 

.For Fig.5, these intervals are approximately ∞<≤ TT3 ,7515,152,20 ≤≤≤≤≤≤ TTT  

and 。Let’s look at these intervals in detail: ∞<≤ T75

A. First interval  10 TT ≤≤

In this interval the pump rises from its initial value of 0 to its maximum valueβ . The pump 

amplitude is not large enough to boost the injected mode , which actually shows a small 

decay while all the other modes at noise level remain unaffected. 
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B. Second interval  21 TTT ≤≤

In this interval has reached its maximum value and is essentially undepleted at that value, 

since all the modes, including the injected mode , are too small to deplete the pump. Thus, in 

this period, is growing exponentially with T, while all the other modes are also being 

pumped up from the initial noise value. 
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C. Third interval  32 TTT ≤≤

Once the injected mode  rises enough, it starts depleting the pump and a quasi-steady 

state I reached. In this state, the injected mode is at its maximum value and the pump has a value 
corresponding to depletion only by the injected mode and its idler. Therefore, we can get an output 

of “pure” injected mode in this interval. During this period, and (the fastest growing 

and idler modes) are still too small to deplete the pump. 
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D. Fourth interval  ∞<≤ TT3

Here, the successful injection is essentially over, since the output is not a “pure” injected 
mode any more. The fastest growing mode gradually rises to its steady state while all the other 
modes begin their decline to insignificant values.  

As we can see from the above examples the operating criteria to be achieved are: 
1) The initial mode should saturate the pump before the maximum-gain mode does and  
2) The gain of the maximum-gain mode, under pump saturation by the injected mode, must 

be small enough to leave the injected mode dominant for a useful period of time. 
One parameter that stands out as a consistent predictor of success for injection tuning 

is max/ KKinject=η , the coupling constant of the injected mode relative to that of the highest gain 



mode. As a consequence of the results reported above and other similar cases, several injection 
criteria can be set down. 

1) Ifη <0.6, then successful injection cannot be expected. 

2) An increase in pump strength will not result in successful injection when 6.0≤η  

3) Ifη >0.6, an increase in pump strength can improve injection. 
4) For low-pump strength ratios, coupling constants considerably higher than 0.6 are required 

for successful injection. 
5) An increase in cavity Q or cavity reflectance appears to improve injection when the 

operation is already at least in the marginal success range. 
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