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LEOS is celebrating its 30th anniversary in 2007.
To commemorate the event, the Newsletter will
include many special features throughout the year.
LEOS Founding President Dr. Henry Kressel has
provided an introductory article in this issue, out-
lining how the society was born. Each issue will also
contain a reprint of an abstract from the most cited
articles in LEOS Journals. Each abstract will be
accompanied by commentaries from one of the
authors and another luminary in the field. This
month, we are pleased to highlight a paper by Dr.
Mansoor Sheik-Bahae et al describing the “Z-Scan”
technique for measuring nonlinear optical coeffi-
cients. This Journal of Quantum Electronics article
has been cited an impressive 1322 times since its
publication in 1990! Co-author Prof. Eric Van
Stryland of CREOL at the University of Central
Florida and Prof. Y. Ron Shen of the University of
California, Berkeley, have provided commentaries
about the origin of the work and its impact since its
publication. 

Our regular features include research highlights
and membership activities. This issue includes two
University Research Highlights articles. Prof. Hui
Cao of Northwestern University and her co-workers
present recent results on Chaotic Microcavity
Lasers. Andrea Fratalocchi of University Roma Tre
in Italy and his co-workers present work on Discrete
Optics in Liquid Crystalline Lattices. We also have
a special article by Dr. Lianshan Yan, coordinator of
the LEOS GOLD (Graduates of the Last Decade)
program, and a description of the new LEOS chap-
ter in Hangzhou, China by Dr. Erik Forsberg. 

LEOS is “The Society for Photonics”, and the
Newsletter will continue to highlight photonics
activities from all over the world this year. The
Associate Editors (Professors Amr Helmy of the
University of Toronto, Hon Tsang of the
Chinese University of Hong Kong, and Kevin
Williams of the Technical University of
Eindhoven) and I plan to add more features that
members will find informative and enlightening
in the coming months. 

Please feel free to send any comments and
suggestions to HYPERLINK " mailto:k.para-
meswaran@ieee.org" k.parameswaran@ieee.org.
I would love to hear from you!
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When it comes to inventions or discoveries, the original inten-
tions are often upstaged by serendipity. In this case, Mansoor
Shiek-Bahae (at the time, a fresh postdoctoral researcher), and
Ali Said (a graduate student) were trying to obtain low-thresh-
old optical limiting (i.e. high transmittance for low input and
low transmittance for high input) in the IR. They noticed that
the limiting through a far-field aperture [1] in various mate-
rials, e.g. CS2, was very dependent on where they placed the
sample with respect to the focus of the laser beam (i.e. the
position along the “Z” axis). For some positions, a self-defo-
cusing nonlinearity could even lead to increased transmittance
through the aperture.  These simple observations could easily
have been dismissed as trivial manifestations of self-lensing,
but since we quickly realized their importance for the accurate
measurement of the sign and magnitude of nonlinear refrac-
tion and absorption, they instead led to the development of
the Z-scan. 

The first publication was a brief letter [2], which was soon
followed by the full article in JQE [3] describing the tech-
nique along with Mansoor’s analysis for the particular case of
Gaussian shaped input beams and complex third-order non-
linear response and the beginnings of the analysis for fifth-
order responses (e.g. two-photon generated free-carrier self
lensing in semiconductors). Experimental demonstrations of
all of these effects were presented in the paper.

This article also includes the method for separating the
effects of nonlinear refraction and nonlinear absorption, one
of the primary hallmarks of the technique. And from the
standpoint of later research, the Z-scan data enabled us to
develop a quantum mechanical theory that used causality
and dispersion relations to link the bound electronic non-

linear refractive index and two-photon absorption (again, a
well-cited paper published in JQE [4,5]). Later, the Z-scan
was also equally critical in our observation of large nonlin-
ear phase shifts due to cascading of second order nonlinear-
ities.[6] All in all, Mansoor’s careful observations served
the NLO community well as evidenced by the number of
references.

[1] M.J. Soileau, William E. Williams, and E.W. Van
Stryland, “Optical Power Limiter with Picosecond
Response Time,” IEEE J. Quantum Electron. QE-19,
731 (1983).

[2] M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland,
“High sensitivity single beam n2 measurement,” Opt.
Lett., vol. 14, pp. 955-957, 1989. 

[3] M. Sheik-bahae, A.A. Said, T.H. Wei, D.J. Hagan, and
E.W. Van Stryland, “Sensitive Measurement of Optical
Nonlinearities Using a Single Beam”, Journal of
Quantum Electronics, QE-26, 760-769 (1989). 

[4] M. Sheik-bahae, D.J. Hagan, and E.W. Van Stryland,
“Dispersion and Band-Gap Scaling of the Electronic
Kerr Effect in Solids Associated with Two-Photon
Absorption”, Phys. Rev. Lett., 65, 96-99 (1989).

[5] M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, and
E.W. Van Stryland, “Dispersion of Bound Electronic
Nonlinear Refraction in Solids”, Journal of Quantum
Electronics, QE-27, 1296-1309 (1991).

[6] R. DeSalvo, D.J. Hagan, M. Sheik-Bahae, G.I.
Stegeman, H. Vanherzeele and E.W. Van Stryland, “Self-
Focusing and Defocusing by Cascaded Second Order
Nonlinearity in KTP”, Opt. Lett. 17, 28-30 (1992).

“Discovering” Z-scan

The 1990 paper of M. Sheik-Bahae et al [1] on “Sensitive
Measurement of Optical Nonlinearities Using a Single Beam” that
introduces the Z-scan technique has won the honor of being the
most cited paper ever published in J. Quantum Electronics. The
reason is simple. It is a beautifully simple, but extremely useful,
nonlinear optical technique for characterization of optical Kerr
materials. There have been broad interests in the booming opto-
electronics industry to find Kerr materials suitable for applications
such as optical limiters, optical switching and optical sensing. Z-
scan serves the interests exceptionally well.

Z-scan refers to the process of inserting a sample in a focused
beam and translating it along the beam axis through the focal
region. Because of wavefront distortion from self-focusing or defo-
cusing in the sample due to Kerr nonlinearity, the beam power
propagating through a small aperture at the far field varies with the
sample position. Measuring the output versus sample position then
allows determination of the nonlinearity. For a Gaussian-profile
beam and a thin sample with a local nonlinear response in the
refractive index change (Δn(r⊥) = γI(r⊥)) to the beam intensity (I(r⊥)),

the transmittance through the aperture (ratio of beam powers
through the aperture with and without the sample nonlinearity)
versus sample position has the shape of an anomalous dispersion
curve around a resonance, being 1 at the focal plane. Analysis of the
curve yields the following simple, but highly accurate, result: the
difference of peak and valley transmittances at wavelength λ for a
sample length of L is given by ΔTpv = 0.406(2πL/λ)Δn0, defined as
positive (negative) when the peak (valley) appears before the focal
plane and the valley (peak) after the focal plane. Here, Δn0 denotes
the refractive index change at the center of the focus. This result
shows that a simple Z-scan measurement can readily yield an accu-
rate valueof Δn0 without resorting to analysis, and the sensitivity is
extremely high. With L/λ ~ 103 and a detecting limit of
|ΔTpv|~0.025, Δn0 larger than 10–5 can be easily measured.
Inclusion of linear absorption in the analysis is straightforward.
Two-photon absorption in the sample can also be measured by sim-
ply removing the aperture in the Z-scan.

As is often the case of great inventions, the Z-scan technique was
discovered unexpectedly when Sheik-Bahae et al were working on

Celebrating the Z-scan Technique
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the optical limiting effect via self-focusing. (See comments by Eric
Van Stryland) Observing, understanding, and recognizing the
importance of the unexpected effect followed by carefully laying the
theoretical foundation for the effect has led to the establishment of
Z-scan as a most powerful tool for nonlinear optical characterization
of materials. Simplicity, accuracy, and sensitivity of the technique
make routine measurements and scanning of nonlinearities of dif-
ferent materials easy and informative, thus providing more oppor-
tunity to develop better understanding of materials and even dis-
cover new nonlinear optical materials and effects. For example, the
results of Z-scan measurement facilitated a better fundamental
understanding of the Kerr nonlinearities in semiconductors [2] and
helped discover the cascade third-order nonlinearities in nonlinear
optical crystals.[3]

Over the years, there have been numerous important advances
on Z-scan. The technique was found to be sufficiently sensitive
to measure nonlinearities of thin films and surface layers in the
reflection geometry. While it is not necessary to use a Gaussian
beam in Z-scan, the beam profile must be known for quantita-
tive determination of nonlinearities (with proper analysis). A
flat-top beam was shown to have better sensitivity in measuring
negative Kerr nonlinearity. Using a disk instead of an aperture in
Z-scan can improve the sensitivity by more than two orders of
magnitude. The technique can employ a pump/probe scheme
with nondegenerate frequencies to study pump-induced refrac-

tive index change and the related transient behavior. Broadband
light source can be used in Z-scan to obtain spectral dispersion
of nonlinearity.[4] The technique is not restricted to measure-
ment of third-order nonlinearity, but is generally applicable to
studies of higher-order nonlinearities with appropriate modifica-
tion of the analysis. It is clear that Z-scan can be used to charac-
terize a nonlinear medium that affects wave propagation, but it
can also be adopted for studies of nonlinear wave propagation in
general. The recent proposal to generate an amplitude-squeezed
state of an optical wave via Kerr nonlinearity using the Z-scan
geometry is an example [5]. In this respect, we can anticipate
much broader applications of Z-scan to optical science in the
future, and we must thank Sheik-Bahae and coworkers for
inventing this wonderful technique.

References:
[1] M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W.

Van Stryland, IEEE J. Quant. Electron. 26, 760 (1990).
[2] M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, and E.W. Van

Stryland, IEEE J. Quant. Electron., 27, 1296 (1991).
[3] R. DeSalvo et al, Optics Letters 17, 28 (1992).
[4] See, for example, M. Balu, J. Hales, D. J. Hagan, and E. W.

Van Stryland, Optics Express, 13, No. 10, 3594-99 (2005).
[5] K. G. Koprulu and P. Kumar, “Quantum Analysis of the Z-

scan Technique,” J. Opt. Soc. Am. B, 24, 77 (2007).
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Abstract
We report a sensitive single-beam technique for measuring both
the nonlinear refractive index and nonlinear absorption coefficient
for a wide variety of materials. We describe the experimental details
and present a comprehensive theoretical analysis including cases
where nonlinear refraction is accompanied by nonlinear absorption.
In these experiments, the transmittance of a sample is measured
through a finite aperture in the far field as the sample is moved
along the propagation path (z) of a focused Gaussian beam. The
sign and magnitude of the nonlinear refraction are easily deduced
from such a transmittance curve (Z-scan). Employing this tech-
nique, a sensitivity of better than λ/300 wavefront distortion is
achieved in n2 measurements of BaF2 using picosecond frequency-
doubled Nd:YAG laser pulses. In cases where nonlinear refraction
is accompanied by nonlinear absorption, it is possible to separately
evaluate the nonlinear refraction as well as the nonlinear absorption
by performing a second Z scan with the aperture removed. We
demonstrate this method for ZnSe at 532 nm where two-photon
absorption is present and n2 is negative.

Introduction
Recently we reported a single-beam method for measuring the sign
and magnitude of n2 that has a sensitivity comparable to interfero-
metric methods [1]. Here, we describe this method in detail and
demonstrate how it can be applied and analyzed for a variety of
materials. We also extend this method to the measurement of non-
linear refraction in the presence of nonlinear absorption. Thus, this
method allows a direct measurement of the nonlinear absorption
coefficient. In addition, we present a simple method to minimize
parasitic effects due to the presence of linear sample inhomo-
geneities.

Previous measurements of nonlinear refraction have used a vari-
ety of techniques including nonlinear interferometry [2], [3],
degenerate four-wave mixing [4], nearly degenerate three-wave
mixing [5], ellipse rotation [6], and beam distortion measurements
[7], [8], The first three methods, namely, nonlinear interferometry
and wave mixing, are potentially sensitive techniques, but all
require relatively complex experimental apparatus. Beam distortion
measurements, on the other hand, are relatively insensitive and
require detailed wave propagation analysis. The technique reported

here is based on the principles of spatial beam distortion, but offers
simplicity as well as very high sensitivity.

We will describe this simple technique, referred to as a “Z-scan,”
in Section II. Theoretical analyses of Z-scan measurements are given
in Section III for a “thin” nonlinear medium. It will be shown that
for many practical cases, nonlinear refraction and its sign can be
obtained from a simple linear relationship between the observed
transmittance changes and the induced phase distortion without
the need for performing detailed calculations. In Section IV, we
present measurements of nonlinear refraction in a number of mate-
rials such as CS2 and transparent dielectrics at wavelengths of 532
nm, 1.06 μm, and 10.6 μm. In CS2 at 10 μm, for example, both
thermooptical and reorientational Kerr effects were identified using
nanosecond and picosecond pulses, respectively. Furthermore, in
Section V, we will consider the case of samples having a significant
absorptive nonlinearity as well as a refractive one. This occurs in, for
example, two-photon absorbing semiconductors. It will be shown
that both effects can easily be separated and measured in the Z-scan
scheme. We also show how effects of linear sample inhomogeneities
(e.g., bulk index variations) can be effectively removed from the
experimental data.

The Z-Scan Technique
Using a single Gaussian laser beam in a tight focus geometry, as
depicted in Fig. 1, we measure the transmittance of a nonlinear
medium through a finite aperture in the far field as a function of the
sample position z measured with respect to the focal plane. The fol-
lowing example will qualitatively elucidate how such a trace (Z-
scan) is related to the nonlinear refraction of the sample. Assume,
for instance, a material with a negative nonlinear refractive index
and a thickness smaller than the diffraction length of the focused
beam (a thin medium). This can be regarded as a thin lens of vari-
able focal length. Starting the scan from a distance far away from
the focus (negative z), the beam irradiance is low and negligible
nonlinear refraction occurs; hence, the transmittance (D2/D1, in
Fig. 1) remains relatively constant. As the sample is brought closer
to focus, the beam irradiance increases, leading to self-lensing in the
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Sensitive Measurement of Optical Nonlinearities
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sample. A negative self-lensing prior to focus will tend to collimate
the beam, causing a beam narrowing at the aperture which results
in an increase in the measured transmittance. As the scan in z con-
tinues and the sample passes the focal plane to the right (positive z),
the same self-defocusing increases the beam divergence, leading to
beam broadening at the aperture, and thus a decrease in transmit-
tance. This suggests that there is a null as the sample crosses the
focal plane. This is analogous to placing a thin lens at or near the
focus, resulting in a minimal change of the far-field pattern of the
beam. The Z-scan is completed as the sample is moved away from
focus (positive z) such that the transmittance becomes linear since
the irradiance is again low. Induced beam broadening and narrow-
ing of this type have been previously observed and explained dur-
ing nonlinear refraction measurements of some semiconductors [9],
[10]. A similar technique was also previously used to measure ther-
mally induced beam distortion by chemicals in solvents [11].

A prefocal transmittance maximum (peak) followed by a post-
focal transmittance minimum (valley) is, therefore, the Z-scan sig-
nature of a negative refractive nonlinearity. Positive nonlinear
refraction, following the same analogy, gives rise to an opposite val-
ley–peak configuration. It is an extremely useful feature of the Z-
scan method that the sign of the nonlinear index is immediately
obvious from the data, and as we will show in the following section,
the magnitude can also be easily estimated using a simple analysis
for a thin medium.

In the above picture describing the Z-scan, one must bear in
mind that a purely refractive nonlinearity was considered assuming
that no absorptive nonlinearities (such as multiphoton or saturation
of absorption) are present. Qualitatively, multiphoton absorption
suppresses the peak and enhances the valley, while saturation pro-
duces the opposite effect. The sensitivity to nonlinear refraction is
entirely due to the aperture, and removal of the aperture complete-
ly eliminates the effect. However, in this case, the Z-scan will still
be sensitive to nonlinear absorption. Nonlinear absorption coeffi-
cients can be extracted from such “open” aperture experiments. We
will show in Section V how the data from the two Z-scans, with and
without the aperture, can be used to separately determine both the
nonlinear absorption and the nonlinear refraction. We will demon-
strate this data analysis on semiconductors where two-photon
absorption and self-refraction are simultaneously present.

Theory
Much work has been done in investigating the propagation of
intense laser beams inside a nonlinear material and the ensuing self-
refraction [12], [13]. Considering the geometry given in Fig. 1, we
will formulate and discuss a simple method for analyzing the Z-
scan data based on modifications of existing theories.

In general, nonlinearities of any order can be considered; how-
ever, for simplicity, we first examine only a cubic nonlinearity where
the index of refraction n is expressed in terms of nonlinear indexes
n2(esu) or γ (m2/W) through

n = n0 + n2

2
|E |2 = n0 + γ I (1)

where n0 is the linear index of refraction, E is the peak electric field
(cgs), and I denotes the irradiance (MKS) of the laser beam within
the sample. (n2 and γ are related through the conversion formula
n2(esu) = (cn0/40π )γ (m2/W ) where c (m/s) is the speed of light

in vacuum.) Assuming a TEMoo Gaussian beam of beam waist
radius w0 traveling in the +z direction, we can write E as

E(z, r, t) = E0(t)
w0

w(z)

· exp

(
− r2

w 2(z)
− ikr2

2R(z)

)
e −iφ(z,t) (2)

where w 2(z) = w 2
0 (1 + z2/z2

0 ) is the beam radius,
R(z) = z(1 + z2

0 /z2 is the radius of curvature of the wave-front at
z, z0 = kw 2

0 /2 is the diffraction length of the beam, k = 2π/λ is
the wave vector, and λ is the laser wavelength, all in free space.
E0(t) denotes the radiation electric field at the focus and contains
the temporal envelope of the laser pulse. The e−iφ(z,t) term con-
tains all the radially uniform phase variations. As we are only con-
cerned with calculating the radial phase variations �φ(r), the
slowly varying envelope approximation (SVEA) applies, and all
other phase changes that are uniform in r are ignored.

If the sample length is small enough that changes in the beam
diameter within the sample due to either diffraction or nonlinear
refraction can be neglected, the medium is regarded as “thin,” in
which case the self-refraction process is referred to as “external self-
action” [14]. For linear diffraction, this implies that L � z0, while
for nonlinear refraction, L � z0/�φ(0). In most experiments
using the Z-scan technique, we find that the second criterion is
automatically met since �φ is small. Additionally, we have found
that the first criterion for linear diffraction is more restrictive than
it need be, and it is sufficient to replace it with L < z0. We have
determined this empirically by measuring n2 in the same material
using various z0’s and the same analysis and have obtained the same
value for n2. Such an assumption simplifies the problem consider-
ably, and the amplitude 

√
I and phase φ of the electric field as a

function of z ′ are now governed in the SVEA by a pair of simple
equations:

d�φ

dz ′ = �n( I)k (3)

and

d I

dz ′ = −α( I) I (4)

where z ′ is the propagation depth in the sample and α ( I ), in gen-
eral, includes linear and nonlinear absorption terms. Note that z ′

should not be confused with the sample position z. In the case of a
cubic nonlinearity and negligible nonlinear absorption, (3) and (4)
are solved to give the phase shift �φ at the exit surface of the sam-
ple which simply follows the radial variation of the incident irradi-
ance at a given position of the sample z. Thus,

�φ(z, r, t) = �φ0(z, t) exp

(
− 2r2

w 2(z)

)
(5a)

with

�φ0(z, t) = ��0(t)

1 + z2/z2
0

. (5b)

��0 (t), the on-axis phase shift at the focus, is defined as

��0(t) = k�n0(t)Leff (6)
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where Leff = (1–e−αL)/α, with L the sample length and α the
linear absorption coefficient. Here, �n0 = γ I0(t) with I0(t)
being the on-axis irradiance at focus (i.e., z = 0). We ignore Fresnel
reflection losses such that, for example, I0(t) is the irradiance with-
in the sample.

The complex electric field exiting the sample Ee now contains
the nonlinear phase distortion

Ee(r, z, t) = E(z, r, t)e−αL/2 e i�φ(z,r,t). (7)

By virtue of Huygen’s principle, one can obtain the far-field pattern
of the beam at the aperture plane through a zeroth-order Hankel
transformation of Ee [15]. We will follow a more convenient treat-
ment applicable to Gaussian input beams which we refer to as the
“Gaussian decomposition” (GD) method given by Weaire et al.
[14], in which they decompose the complex electric field at the exit
plane of the sample into a summation of Gaussian beams through
a Taylor series expansion of the nonlinear phase term ei�φ(z,r,t) in
(7). That is,

e i�φ(z,r,t) =
∞∑

m =0

[i�φ0(z, t)]m

m!
e−2mr2/w 2(z). (8)

Each Gaussian beam can now be simply propagated to the aperture
plane where they will be resummed to reconstruct the beam. When
including the initial beam curvature for the focused beam, we
derive the resultant electric field pattern at the aperture as

Ea(r, t) = E(z, r = 0, t)e−αL/2
∞∑

m = 0

[i�φ0(z, t)]m

m!

× wm0

wm
· exp

(
− r2

w 2
m

− ikr2

2Rm
+ i θm

)
. (9)

Defining d as the propagation distance in free space from the sam-
ple to the aperture plane and g = 1 + d/R(z), the remaining
parameters in (9) are expressed as

w 2
m0 = w 2(z)

2m + 1

dm = kw 2
m0

2

w 2
m = w 2

m0

[
g2 + d 2

d 2
m

]

Rm = d

[
1 − g

g2 + d 2/d 2
m

]−1

and

θm = tan−1

[
d/dm

g

]
.

The expression given by (9) is a general case of that derived by
Weaire et al. [15] where they considered a collimated beam
(R = ∞) for which g = 1. We find that this GD method is very
useful for the small phase distortions detected with the Z-scan
method since only a few terms of the sum in (9) are needed. The
method is also easily extended to higher order nonlinearities.

The transmitted power through the aperture is obtained by spa-

tially integrating Ea(r, t) up to the aperture radius ra, giving

PT (��0(t)) = cε0n0π

∫ ra

0
| Ea(r, t) |2 rdr (10)

where ε0 is the permittivity of vacuum. Including the pulse tem-
poral variation, the normalized Z-scan transmittance T(z) can be
calculated as

T(z) =
∫ ∞
−∞ PT (��0(t))dt

S
∫ ∞
−∞ Pi(t)dt

(11)

where Pi(t) = πw 2
0 I0(t)/2 is the instantaneous input power

(within the sample) and S = 1 − exp(−2r2
a /w 2

0 ) is the aperture
linear transmittance, with wa denoting the beam radius at the aper-
ture in the linear regime.

We first consider an instantaneous nonlinearity and a
temporally square pulse to illustrate the general features of the Z-
scan. This is equivalent to assuming CW radiation and the non-
linearity has reached the steady state. The normalized transmit-
tance T(z) in the far field is shown in Fig. 2 for ��0 = ±0.25
and a small aperture (S = 0.01). They exhibit the expected fea-
tures, namely, a valley–peak (v − p) for the positive nonlinearity
and a peak–valley (p − v) for the negative one. For a given ��0,
tne magnitude and shape of T(z) do not depend on the wave-
length or geometry as long as the far-field condition for the aper-
ture plane (d � z0) is satisfied. The aperture size S, however, is an
important parameter since a large aperture reduces the variations
in T(z). This reduction is more prominent in the peak where
beam narrowing occurs and can result in a peak transmittance
which cannot exceed (1 − S). Needless to say, for very large aper-
ture or no aperture (S = 1), the effect vanishes and T(z) = 1 for
all z and ��0. For small | ��0 |, the peak and valley occur at the
same distance with respect to focus, and for a cubic nonlinearity,
this distance is found to be � 0.86 z0 as shown in the Appendix.
With larger phase distortions (| ��0 |> 1), numerical evaluation
of (9)–(11) shows that this symmetry no longer holds and peak and
valley both move toward ±z for the corresponding sign of nonlin-
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Figure 2: Calculated Z-scan transmittance curves for a cubic 
nonlinearity with either polarity and a small aperture (S = 0.01).
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earity (±��0) such that their separation remains nearly constant,
given by

�Zp−v � 1.7z0. (12)

We can define an easily measurable quantity �Tp−v, as the differ-
ence between the normalized peak and valley transmittance:
Tp − Tv. The variation of this quantity as a function of | ��0 |, as
calculated for various aperture sizes, is illustrated in Fig. 3. These
curves exhibit some useful features. First, for a given order of non-
linearity, they can be considered universal. In other words, they are
independent of the laser wavelength, geometry (as long as the far-
field condition is met), and the sign of nonlinearity. Second, for all
aperture sizes, the variation of �Tp−v, is found to be almost linear-
ly dependent on | ��0 |. As shown in the Appendix for small
phase distortion and small aperture (S � 0),

�Tp−v � 0.406 |��0|. (13a)

Numerical calculations show that this relation is accurate to with-
in 0.5 percent for | ��0 |≤ π . As shown in Fig. 3, for larger aper-
tures, the linear coefficient 0.406 decreases such that with S = 0.5,
it becomes � 0.34, and at S = 0.7, it reduces to � 0.29. Based
on a numerical fitting, the following relationship can be used to
include such variations within a ±2% accuracy:

�Tp−v � 0.406(1 − S)0.25 |��0|.
for |��0| ≤ π. (13b)

The implications of (13a) and (13b) are quite promising in that

they can be used to readily estimate the nonlinear index (n2) with
good accuracy after a Z-scan is performed. What is most intriguing
about these expressions is that they reveal the highly sensitive
nature of the Z-scan technique. For example, if our experimental
apparatus and data acquisition systems are capable of resolving
transmittance changes �Tp−v of � 1 %, we will be able to meas-
ure phase changes corresponding to less than λ/250 wavefront dis-
tortion. Achieving such sensitivity, however, requires relatively
good optical quality of the sample under study. We describe in the
experimental Section IV a means to minimize problems arising
from poor optical quality samples.

We can now easily extend the steady-state results to include
transient effects induced by pulsed radiation by using the time-
averaged index change 〈�n0(t)〉 where

〈�n0(t)〉 =
∫ ∞
−∞ �n0(t) I0(t)dt∫ ∞

−∞ I0(t)dt
. (14)

The time-averaged 〈��0(t)〉 is related to 〈�n0(t)〉 through (6).
With a nonlinearity having instantaneous response and decay times
relative to the pulsewidth of the laser, one obtains for a temporally
Gaussian pulse

〈�n0(t)〉 = �n0/
√

2 (15)

where �n0 now represents the peak-on-axis index change at the
focus. For a cumulative nonlinearity having a decay time much
longer than the pulsewidth (e.g., thermal), the instantaneous index
change is given by the following integral:

�n0(t) = A
∫ t

−∞
I0(t ′)dt ′ (16)

where A is a constant which depends on the nature of the nonlin-
earity. If we substitute (16) into (14), we obtain a fluence averaging
factor of 1/2. That is,

〈�n0(t)〉 = 1

2
AF (17)

where F is the pulse fluence at focus within the sample.
Interestingly, the factor of 1/2 is independent of the temporal pulse
shape.

These equations were obtained based on a cubic nonlinearity
(i.e., a χ(3) effect). A similar analysis can be performed for high-
er order nonlinearities. Regardless of the order of the nonlineari-
ty, the same qualitative features are to be expected from the Z-
scan analysis. In particular, to quantify such features, we exam-
ined the effects of a χ(5) nonlinearity which can be represented by
a nonlinear index change given as �n = η I2. Nonlinearities
encountered in semiconductors where the index of refraction is
altered through charge carriers generated by two-photon absorp-
tion (i.e., a sequential χ(3): χ(1) effect) appear as such a fifth-order
nonlinearity [20].

For a fifth-order effect, assuming a thin sample and using the
GD approach, we find that the peak and valley are separated by
�1.2 z0 as compared to 1.7 z0 obtained for the third-order effect.
Furthermore, the calculations also show that for a small aperture
(S � 0),

�Tp−v � 0.21 |��0| (18)
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Figure 3: Calculated �Tp−v as a function of the phase shift at the
focus (��0). The sensitivity, as indicated by the slope of the curves,
decreases slowly for larger aperture sizes (S > 0).
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where, in this case, the phase distortion is given by

��0 = kη I2

(
1 − e−2αL

2α

)
. (19)

Calculations also indicate that the aperture size dependence of (18)
can be approximated by multiplying the right-hand term by
(1 − S )0.25, as was the case for a third-order nonlinearity.

As will be shown in Section V, we can also determine the non-
linear refraction in the presence of nonlinear absorption by sepa-
rately measuring the nonlinear absorption in a Z-scan performed
with the aperture removed. Within approximations elaborated in
Section V, a simple division of the curves obtained from the two Z-
scans will give the nonlinear refraction.

Experimental Results
We examined the nonlinear refraction of a number of materials
using the Z-scan technique. Figure 4 shows a Z-scan of a 1 mm
thick cuvette with NaCl windows filled with CS2 using 300 ns
TEA CO2 laser pulses having an energy of 0.85 mJ. The peak–val-
ley configuration of this Z-scan is indicative of a negative (self-defo-
cusing) nonlinearity. The solid line in Fig. 4 is the calculated result
using 〈��0〉 = −0.6, which gives an index change of
〈�n0〉 � −1 × 10−3. As mentioned earlier, such detailed theo-
retical fitting is not necessary for obtaining 〈�n0〉 (only �Tp−v is
needed). The defocusing effect shown in Figure 4 is attributed to a
thermal nonlinearity resulting from linear absorption of CS2

(α � 0.22 cm−1 at 10.6 μm). The rise time of a thermal lens in a
liquid is determined by the acoustic transit time τ � w0/vs where
vs is the velocity of sound in the liquid [17]. For CS2 with
vs � 1.5 × 105cm/s and having w0 � 60 μm, we obtain a rise
time of � 40 ns, which is almost an order of magnitude smaller
than the TEA laser pulsewidth. Furthermore, the relaxation of the
thermal lens, governed by thermal diffusion, is on the order of 100
ms [17]. Therefore, we regard the nonuniform heating caused by
the 300 ns pulses as quasi-steady state, in which case, from (17), the
average on-axis nonlinear index change at focus can be determined
in terms of the thermo-optic coefficient dn/d T as

〈�n0〉 = dn

d T

F0α

2ρCv
(20)

where F0 is the fluence, ρ is the density, Cv, is the specific heat, and
1/2 denotes the fluence averaging factor. With the known value of
ρCv � 1.3 J/K · cm3 for CS2, we deduce
dn/d T � −(8.3 ± 1.0)× 10−4 0C−1, which is in good agree-
ment with the reported value of −8 × 10−4 0C−1 [16].

With ultrashort pulses, nonlocal nonlinearities such as thermal
or electrostriction are no longer significant. Particularly, in CS2, the
molecular reorientational Kerr effect becomes the dominant mech-
anism for nonlinear refraction. CS2 is frequently used as a standard
reference nonlinear material [18], [19]. We have used picosecond
pulses at 10.6, 1.06, and 0.53 μm to measure n2 in CS2, We obtain
the same value of n2, within errors, at all three wavelengths,
(1.5 ± 0.6) × 10−11 esu at 10.6 μm, (1.3 ± 0.3) × 10−11 esu
at 1.06 μm, and (1.2 ± 0.2) × 10−11 esu at 0.53 μm. The exter-
nal self-focusing arising from the Kerr effect in CS2 is shown in Fig.
5 where a Z-scan of a 1 mm cell using 27 ps (FWHM) pulses
focused to a beam waist w0 of 25 μm from a frequency-doubled
Nd: YAG laser is illustrated. Its valley–peak configuration indicates

the positive sign of n2. With �Tp−v = 0.24, and using (13b) with
a 40% aperture (S = 0.4), one readily obtains
a 〈�n0〉 = 5.6 × 10−5. Using the peak irradiance of 2.6
GW/cm2, this value of 〈�n0〉 corresponds to an
n2 � (1.2 ± 0.2) × 10−11 esu. The main source of uncertainty in
the value of n2 is the absolute measurement of the irradiance. In this
paper, all irradiance values quoted are values within the sample, i.e.,
including front surface reflection losses. A plot of �Tp−v versus
peak laser irradiance as measured from various Z-scans on the same
CS2 cell is shown in Fig. 6. The linear behavior of this plot follows
(13) as derived for a cubic nonlinearity.

Transparent dielectric window materials have relatively small
nonlinear indexes. Recently, Adair et al. [21] have performed a care-
ful study of the nonlinear index of refraction of a large number of
such materials in a nearly degenerate three-wave mixing scheme at
λ � 1.06 μm. Using the Z-scan technique, we examined some of
these materials at 532 nm. For example, the result for a randomly
oriented sample of BaF2 (2.4 mm thick) is shown in Fig. 7, using
the same beam parameters as for CS2. This Z-scan was obtained
with a 50% aperture and at a pulse energy of �28 μJ correspon-
ding to a peak irradiance ( I0) of �100 GW/cm2. A low irradiance
(4 μJ) Z-scan of the same sample was shown in [1] to have a phase
distortion resolution of better than λ/300. (The pulse energy for
this Z-scan was misquoted as 2 μJ in [1].) Such a resolution is also
shown in Fig. 7 by the arrows indicating the corresponding trans-
mittance variation equal to the maximum scatter in the Z-scan
data. For laser systems having better amplitude and pulsewidth sta-
bility, the sensitivity will be correspondingly improved.

Aside from the statistical fluctuations of the laser irradiance, sur-
face imperfections or wedge in the sample may lead to systematic
transmittance changes with z that could mask the effect of nonlin-
ear refraction. We found, however, that such “parasitic” effects may
be substantially reduced by subtracting a low irradiance back-
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Figure 4: Measured Z-scan of a 1 mm thick CS2 cell using 300 ns
pulses at λ = 10.6 μm indicating thermal self-defocusing. The
solid line is the calculated result with 〈��0〉 = −0.6 and 60%
aperture (S = 0.6).
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ground Z-scan from the high irradiance scan, after normalizing
each scan. Fig. 8 shows Z-scan data before and after subtraction in
a particularly poor 1 mm thick sample of ZnSe. A simple comput-
er simulation of this process, assuming that the surface imperfec-
tions do not disturb the circular symmetry of the beam or cause any
beam steering, indicated that background subtraction indeed
recovers the original �Tp−v arising from the nonlinear refraction
effect, even for quite large surface disturbances, that is, �φs of up
to π .

Returning to the Z-scan of Fig. 7, we obtain

n2 � (0.9 ± 0.15) × 10−3 esu for BaF2 at 532 nm, which is in
close agreement with our low irradiance measurement of
� (0.8 ± 0.15) × 10−3 esu as reported in [1]. This compares
well with other reported values of 0.7 × 10−13 esu [21] and
1.0 × 10−13 esu [3] as measured at 1.06 μm using more complex
techniques of nearly degenerate three-wave mixing and time-
resolved nonlinear interferometry, respectively. Similarly for MgF2,
we measure n2 � 0.25 × 10−13 esu at 532 nm as compared to the
reported value of 0.32 × 10−13 esu at 1.06 μm for this material as
given in [21]. Since the transparency region of these materials
extends from mid-IR to UV, the dispersion in n2 between 1 and 0.5
μm is expected to be negligible. It should be noted that the n2 val-
ues extracted from the Z-scans are absolute rather than relative
measurements. If the beam parameters are not accurately known,
however, it should be possible to calibrate the system by using a
standard nonlinear material such as CS2.

Effects of Nonlinear Absorption
We now describe a method by which the Z-scan technique can be
used to determine both the nonlinear refractive index and the non-
linear absorption coefficient for materials that show such nonlinear-
ities simultaneously. Large refractive nonlinearities in materials are
commonly associated with a resonant transition which may be of
single or multiphoton nature. The nonlinear absorption in such
materials arising from either direct multiphoton absorption, satu-
ration of the single photon absorption, or dynamic free-carrier
absorption have strong effects on the measurements of nonlinear
refraction using the Z-scan technique. Clearly, even with nonlinear
absorption, a Z-scan with a fully open aperture (S = 1) is insensi-
tive to nonlinear refraction (thin sample approximation). Such Z-
scan traces with no aperture are expected to be symmetric with
respect to the focus (z = 0) where they have a minimum trans-
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Figure 6: �Tp−v in percent as a function of the peak irradiance
from the Z-scan data of CS2 at 532 nm, indicative of the reorien-
tational Kerr effect.
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Figure 7: Measured Z-scan of a 2.4 mm thick BaF2 sample using
27 ps pulses at λ = 532 nm, indicating the self-focusing due to the
electronic Kerr effect. The solid line is the calculated result with a
peak ��0 = 0.73. The separation of the arrows corresponds to an
induced phase distortion of λ/300.
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Figure 5: Measured Z-scan of a 1 mm thick CS2 cell using 27 ps
pulses at λ = 532 nm. It depicts the self focusing effect due to the
reorientational Kerr effect.
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mittance (e.g., multiphoton absorption) or maximum transmit-
tance (e.g., saturation of absorption). In fact, the coefficients of non-
linear absorption can be easily calculated from such transmittance
curves.

Here, we analyze two-photon absorption (2PA), which we have
studied in semiconductors with Eg < 2hω < 2Eg where Eg is the
bandgap energy and ω is the optical frequency [22]. The third-
order nonlinear susceptibility is now considered to be a complex
quantity:

χ(3) = χ
(3)
R + iχ(3)

l (21)

where the imaginary part is related to the 2PA coefficient β
through

χ
(3)
I = n 2

0 ε0 c 2

ω
β (22a)

and the real part is related to γ through

χ
(3)
R = 2n 2

0 ε0 cγ. (22b)

Here, we are concerned with the low excitation regimes where the
free-carrier effects (refractive and absorptive) can be neglected. In
view of this approximation, (3) and (4) will be reexamined after the
following substitution:

α( I) = α + βI. (23)

This yields the irradiance distribution and phase shift of the beam
at the exit surface of the sample as

Ie(z, r, t) = I(z, r, t)e−αL

1 + q(z, r, t)
(24)

and

�φ(z, r, t) = kγ

β
In[1 + q(z, r, t)] (25)

where q(z, r, t) = βI(z, r, t)Leff (again, z is the sample position).
Combining (24) and (25), we obtain the complex field at the exit
surface of the sample to be [23]

Ee = E(z, r, t)e−αL/2(1 + q)(ikγ/β−1/2). (26)

Equation (26) reduces to (7) in the limit of no two-photon absorp-
tion. In general, a zeroth-order Hankel transform of (26) will give
the field distribution at the aperture which can then be used in (10)
and (11) to yield the transmittance. For |q | < 1, following a bino-
mial series expansion in powers of q, (26) can be expressed as an infi-
nite sum of Gaussian beams similar to the purely refractive case
described in Section III as follows:

Ee = E(z, r, t)e−αL/2
∞∑

m = 0

q(z, r, t)]m

m!

·
[∏

n = 0

(ikγ/β − 1/2 − n + 1)

]
(27)

where the Gaussian spatial profiles are implicit in q(z, r, t) and

E(z, r, t). The complex field pattern at the aperture plane can be
obtained in the same manner as before. The result can again be rep-
resented by (9) if we substitute the (i�φ0(z, t))m/m! terms in the
sum by

fm = (i�φ0(z, t))m

m!

m∏
n = 0

(
1 + i(2n − 1)

β

2kγ

)
(28)

with f0 = 1. Note that the coupling factor β/2kγ is the ratio of
the imaginary to real parts of the third-order nonlinear
susceptibility χ(3).

The Z-scan transmittance variations can be calculated following
the same procedure as described previously. As is evident from (28),
the absorptive and refractive contributions to the far-field beam
profile and hence to the Z-scan transmittance are coupled. When
the aperture is removed, however, the Z-scan transmittance is
insensitive to beam distortion and is only a function of the nonlin-
ear absorption. The total transmitted fluence in that case (S = 1)

can be obtained by spatially integrating (24) without having to
include the free-space propagation process. Integrating (24) at z
over r, we obtain the transmitted power P(z, t) as follows:

P(z, t) = Pi(t)e−αL In[1 + q0(z, t)]

q0(z, t)
(29)

where q0(z, t) = βI0(t)Leff/(1 + z2/z2
0 ) and Pi(t) was defined

in (11). For a temporally Gaussian pulse, (29) can be time integrat-
ed to give the normalized energy transmittance

T(z, S = 1) = 1√
π q0(z, 0)

·
∫ ∞

−∞
In

[
1 + q0(z, 0)e−τ 2

]
dτ . (30)

For |q0| < 1, this transmittance can be expressed in terms of the
peak irradiance in a summation form more suitable for numerical
evaluation:

T(z, S = 1) =
∞∑

m = 0

[−q0(z, 0)]m

(m + 1)3/2
. (31)

Thus, once an open aperture (S = 1) Z-scan is performed, the non-
linear absorption coefficient β can be unambiguously deduced.
With β known, the Z-scan with aperture in place (S < 1) can be
used to extract the remaining unknown, namely, the coefficient γ .

An experimental example of this procedure is shown in Fig. 9
where a 2.7 mm thick ZnSe sample is examined using 27 ps
(FWHM) pulses at 532 nm. ZnSe with a band-gap energy of 2.67
eV is a two-photon absorber at this wavelength. With a linear index
of 2.7, the diffraction length inside the sample (n0z0) was approx-
imately four times the sample thickness. This allows us to safely
apply the thin sample analysis developed in this paper. Fig. 9(a)
depicts the open aperture data at a peak irradiance I0 of 0.21
GW/cm2. Also plotted is the theoretical result using (28) in (9)
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with β = 5.8 cm/GW. This is in excellent agreement with the
previously measured value of 5.5 cm/GW [22]. Under the same
conditions, the Z-scan with a 40% aperture, as shown in Fig. 9(b),
exhibits a self-defocusing effect. These data have had a low irradi-
ance background Z-scan subtracted to reduce the effects of linear
sample inhomogeneities. Note the significant difference between
this Z-scan and that of a purely refractive case. Here, the nonlinear
absorption (2PA) has greatly suppressed the peak and enhanced the
valley of the transmittance. The theoretical fit in Fig. 9(b) is
obtained by setting β = 5.8 cm/GW and adjusting γ to be
6.8 × 10−14 cm2/W (n2 = 4.4 × 10−11 esu) with an uncertain-
ty of ±25% arising predominantly from the irradiance calibration.

An irradiance-dependent Z-scan study of the ZnSe indicates
that for an irradiance I0 < 0.5 GW/cm2, the nonlinear refraction
is dominated by a third-order effect. This is depicted in Fig. 10
where the measured nonlinear index change �n0 varies linearly
with the irradiance. At higher irradiance levels, however, the non-
linear refraction caused by 2PA generated charge carriers, an effec-
tive fifth-order nonlinearity, becomes important. This is indicated
in Fig. 10 by the small deviation of �n0 at I0 = 0.57 GW/cm2

from the line representing the cubic nonlinearity. An earlier inves-
tigation of ZnSe using picosecond time-resolved degenerate four-
wave mixing (DFWM) at 532 nm had indicated that a fast χ(3)

effect followed by a slowly decaying χ(5)
eff resulting from two-pho-

ton generated charge carriers was responsible for the DFWM signal
[24]. Z-scan experiments reported here verify those results, and in
addition, can accurately determine the sign and magnitude of these
nonlinearities.

As was done for the case of a purely refractive effect, it is desir-
able to be able to estimate γ and β without having to perform a
detailed fitting of the experimental data. A thorough numerical
evaluation of the theoretical results derived in this section indicat-
ed that within less than 10% uncertainty, such a procedure is pos-
sible provided that q0(0, 0) ≤ 1 and β/2kγ ≤ 1. The first con-
dition can be met by adjusting the irradiance. The second condition
is an intrinsic property of the material implying that the Im(χ(3))
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Figure 8: (a) Measured Z-scans of a 1 mm thick ZnSe sample with
poor surface quality for low irradiance (diamonds) showing the
background and high irradiance (+). (b) Net transmittance
change versus z after the background subtraction of the data in (a).
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Figure 9: Normalized Z-scan transmittance of ZnSc measured using
picosecond pulses at λ = 532 nm with I0 = 0.21GW/cm2 . The
solid lines are the theoretical results, (a) No aperture (S = 1) data
and fit using 5.8 cm/GW. (b) 40% aperture data fitted with 
β = 5.8 cm/GW and γ = 6.8 × 10−5cm2/GW.
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should not be larger than the Re(χ(3)). This is the case for the
semiconductors studied as well as for a wide variety of other mate-
rials. The separation and evaluation process is simple: divide the
closed aperture (S < 1) normalized Z-scan (with background sub-
tracted) by the one with open aperture (S = 1). The result is a new
Z-scan where �Tp−v agrees to within ±10% of that obtained from
a purely refractive Z-scan. The result of this procedure for the Z-
scans of Fig. 9 is illustrated in Fig. 11 where the division of the two
Z-scans of both experiment and theory are compared to the calcu-
lated Z-scan with β = 0. A simple measurement of �Tp−v and
using (13) readily gives a value of γ = 6.7 × 10−14 cm2/W,
which is in excellent agreement with the value 6.8 × 10−14

cm2/W obtained earlier.

Conclusion
We have demonstrated a simple single-beam technique that is sen-
sitive to less than λ/300 nonlinearly induced phase distortion.
Using the Z-scan data, the magnitude of the nonlinear absorption
and the magnitude and sign of the nonlinear refraction can be sep-
arately determined. We have derived simple relations that allow the
refractive index to be obtained directly from the Z-scan data with-
out resorting to computer fits. We have applied this technique to
several materials displaying a variety of nonlinearities on different
time scales. It is expected that this method will be a valuable tool
for experimenters searching for highly nonlinear materials.

Appendix
Here, we derive the on-axis Z-scan transmittance for a cubic non-
linearity and a small phase change. The on-axis electric field at the
aperture plane can be obtained by letting r = 0 in (9).
Furthermore, in the limit of small nonlinear phase change
(|��0| � 1), only two terms in the sum in (9) need be retained.
Following such simplifications, the normalized Z-scan transmit-
tance can be written as

T(z,��0) = |Ea(z, r = 0,�φ0)|2
|Ea(z, r = 0,�φ0 = 0)|2

= |(g + id/d0)
−1 + i�φ0(g + id/d1)

−1|2
|(g + id/d0)−1|2 .

(A1)

The far-field condition d � z0 can be used to further simplify (Al)
to give a geometry-independent normalized transmittance as

T(z,��0) � 1 − 4��0x

(x2 + 9)(x2 + 1)
(A2)

where x = z/z0.
The extrema (peak and valley) of the Z-scan transmittance can

be calculated by solving the equation d T(z,��0)/dz = 0.
Solutions to this equation yield

xp,v = ±
√√

52 − 5

3
� ±0.858. (A3)

Therefore, we can write the peak–valley separation as

�Zp−v = � 1.7 z0. (A4)

Also, inserting the x values from (A3) into (A2), the peak–valley
transmittance change is

�Tp−v = 8|xp,v|
(x2

p,v + 9)(x2
p,v + 1)

��0

= 0.406 ��0. (A5)
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Figure 10: The change of index in ZnSe versus the peak irradiance
I0 as measured from the Z-scan experiments. The line represents a
cubic (n2 type) nonlinearity. The deviation from the line is indica-
tive of higher order refractive effects arising from two-photon gen-
erated charge carriers. The negative sign of the index change is
apparent from the peak-valley configuration of Fig. 9(b).
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Figure 11: The result of the division of the Z-scans of Fig. 9 (b)/(a):
experimental (diamonds) and theoretical (solid line). The broken
line shows the calculated result assuming β = 0. The �Tp−v. of the
latter agrees with that of the solid line fit to within 3%, making it
possible to quickly estimate γ .
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