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We present an efficient and numerically stable method to calculate time-dependent, laser-induced
temperature distributions in solids and provide a detailed description of the computational procedure
and its implementation. This study combines the two-dimensional heat equation with laser-induced
heat generation and temperature-dependent luminescence. The time-dependent optical response of a
system is obtained numerically by the Crank—Nicolson method. This general model is applied to the
specific case of optical refrigeration in ytterbium (Yb**) doped fluorozirconate glass (ZBLAN). The
laser-induced temperature change upon optical pumping and the respective transient luminescence
response are calculated and compared to experimental data. The model successfully predicts the
zero-crossing temperature, the net quantum efficiency, and the functional shape of the transients. We
find that the laser-cooling transients have a fast and a slow component that are determined by the
excited-state lifetime of the luminescent ion and the thermal properties of the bulk, respectively. The
tools presented here may find application in the design of a wide range of optical and optoelectronic

devices. © 2010 American Institute of Physics. [doi:10.1063/1.3277009]

I. INTRODUCTION

Thermal processes in luminescent materials are a critical
factor determining the performance of solid-state optical
refrigerators,1 laser gain materials,” display and lamp
phosphors,3 solid-state lighting devices,*® luminescent
biomarkers,”” and fiber lasers and amplifiers. Light-induced
heating also plays a key role in laser ablation,' photothermal
therapy,“_13 laser-induced damage of tissue, and thermal
lensing. While the fundamental aspects of this problem are
readily comprehended from the basic heat equation, actual
calculations of time-dependent laser-induced temperature
gradients are more challenging and often require advanced
numerical tools and considerable computational pOWGI‘.M’lS
The concept of laser-induced heating in general has been
studied extensively,m*18 but no comprehensive model of
laser-induced heat diffusion and its effect on luminescence in
bulk solids exists.

This paper presents an efficient and numerically stable
method to calculate time-dependent laser-induced tempera-
ture distributions in solids and provides a detailed descrip-
tion of the computational procedure and its implementation.
In addition, we introduce a temperature-dependent material
property, in this case luminescence from a rare-earth ion, and
show that the respective transient response of the system
upon optical pumping is predicted correctly by the model. To
our knowledge, this study is the first to combine the heat
equation with temperature-dependent luminescence in order
to predict the time-dependent optical response of a system.
The tools presented here may find application in the design
of a wide range of optical and optoelectronic devices.
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As an example, we apply the method to optical refrig-
eration in the Yb** doped fluorozirconate glass ZBLAN
(ZrF,—BaF,—LaF;-AlF;—NaF). The development of laser-
cooling materials and devices has made significant progress
over the past decade."'® The focus has been primarily on the
study of a variety of rare-earth doped materials and ways to
fabricate them in the exceedingly high purity and optical
quality required for laser-cooling applications. However, a
quantitative description of the dynamics of laser-induced
cooling is still needed and is critical for the characterization
of laser-cooling materials as well as for the design and per-
formance optimization of actual optical cryocooler devices.
The relaxation of excited rare-earth ions in solids involves
both radiative and nonradiative processes. The nonradiative
processes are exothermic in most rare-earth doped materials;
that is, net heat is deposited into the host, and the material
heats as a result of laser excitation. Both radiative and non-
radiative processes also occur in laser-cooling materials; but
here, the net result of the nonradiative processes is endo-
thermic, and the material cools as a result of laser excitation.
Two-band differential luminescence thermometry (TBDLT),
a technique that measures laser-induced changes in the lumi-
nescence spectrum in the time domain to infer subtle changes
in internal sample temperature,20 builds on transient laser-
induced temperature changes, and serves as a test of the
model developed in this study. We show that the model cor-
rectly predicts the time dependence of the TBDLT signal and
finds that the transients have a fast and a slow component
that are determined by the excited-state lifetime of the lumi-
nescent ion and the thermal properties of the bulk, respec-
tively.

In Sec. II, the two-dimensional (2D) heat equation is
introduced, laser-induced internal thermal processes in a
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two-level system are incorporated, and a formal description
of TBDLT is presented. Section III applies the model to laser
cooling in ZBLAN:Yb3* glass and compares the calculated
performance with experimental TBDLT transients.

Il. MODEL OF TIME-DEPENDENT LASER-INDUCED
HEATING IN SOLIDS

Consider a rectangular solid sample that is excited by a
single-mode laser focused into the center of the bulk mate-
rial. If scattering can be neglected, laser-induced radiative
and nonradiative processes will occur over the focused range
of the laser, that is, over 2z in the longitudinal direction,
where zR=w§7T/)\p is the Rayleigh range. Temperature
changes in the longitudinal direction over the Rayleigh range
will be minimal, and the three-dimensional system can be
approximated by a 2D transverse slab with thickness 2z. We
will first present the well-known 2D heat equation, describe
the numerical method for solving the respective differential
equations (Sec. IT A), and subsequently introduce laser-
induced heating (Sec. II B). Section III C introduces a formal
description of TBDLT that will be used as an example and
validation of the model developed in this section.

A. The 2D heat equation and the Crank—Nicolson
method

The diffusion of heat is governed by the heat equation,
which follows from the Fourier law and conservation of en-
ergy. The Fourier law

g_ﬁq:—KVT (1)

states that the local heat flux (Z)q is proportional to the tem-
perature gradient V7. Note that the thermal conductivity «
generally varies with temperature and direction in aniso-
tropic materials, in which case x becomes a tensor. In the
following we shall ignore both these dependencies. Assum-
ing that no work is being performed, the change in internal
energy per unit volume AQ is proportional to the change in
temperature AT; that is,

AQ = C,pAT. (2)

We now assume that the specific heat capacity C, and
the mass density p are both independent of temperature. In
the absence of internal heat generation, the change in internal
energy must be accounted for entirely by heat flux across the
boundaries, and therefore the change in internal heat and the
heat flow across the boundary must be equal. This yields the
heat equation, which in the 2D case is given by

T (x,y,1) K PT(x,y,1) . PT(x,y,1) 3)
at - Cop ax* ay? '

In Eq. (3), T(x,y,1) is the temperature (in K) at time # (in s)
and location (x,y) (in m),  is the thermal conductivity (in
W m™' K™), pis the mass density (in kg m™), and C, is the
specific heat capacity (in J kg™! K™!). The heat equation is a
second-order partial differential equation (PDE), specifically
it is a parabolic PDE. Note that this equation does not ac-
count for internal heat generation, which is added as a source
term later in this section [Eq. (7)] when the equation is
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FIG. 1. Definition of quantities for the CN method in a 2D square grid.

solved using the Crank—Nicolson (CN) formalism.

The heat equation can only be solved analytically in a
few cases and usually must be evaluated numerically, espe-
cially in 2D and three-dimensional problems. Several ex-
plicit and implicit numerical methods exist for this purpose.
Explicit methods calculate the state of the system Y(r+Ar) at
a later time r+Af from the state of the system Y(z) at the
current time 7; that is, Y(t+Af)=F[Y(z)]. Implicit methods on
the other hand solve an equation that contains both the cur-
rent and the later state of the system; that is, G[Y(z),Y(z
+Ar)]=0. Explicit methods are easier to implement than im-
plicit methods; however, they often fail because the PDEs
tend to be unstable unless At is chosen to be extremely small,
which makes explicit methods slow and sensitive to round
off errors. In contrast, implicit methods require upfront com-
putation that is usually more than offset by their advantages
of unconditional stability and larger time steps.

The CN scheme is an implicit method?! that is a particu-
larly powerful approach for numerically solving parabolic
PDEs such as the heat equation. It is a second-order method
that is implicit in time and that is numerically stable. In the
2D case on a uniform Cartesian coordinate grid, the heat
equation in the CN scheme becomes®!

(142 M)T;{;I-<§>(7"+l AT T T = (1

i+1,j i,j+

-2 /'L)Tzn,]+< )( 1+l/

where T . +; 1s the temperature at time step n and at grid loca-

tion (i,j). w is the dimensionless Courant— Frledrlchs—Lewy

(CFL) number for the 2D case and is given by*
KAt

pC,(Ad)*’

T+ T ), (4)

u= (5)
where Ad is the lattice constant of the Cartesian square grid
that comprises N X N cells. These quantities are illustrated in
Fig. 1. Equation (4) can be written in matrix notation as

[T = [T, (6)

where [7"*!] and [7"] are one-dimensional matrices of length
N? containing the temperatures at locations (i,j) for time
steps n+1 and n, respectively. [u"*!] and ["] are 2D matri-
ces of size N> X N? that contain the 1 =2 u and *u/2 fac-
tors in Eq. (4) as well as the boundary conditions (see Sec.
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IT A 2). In the presence of internal thermal processes (e.g.,
laser-induced heating or cooling) with power P, AQ=PA¢ of
thermal energy will be deposited into the material during the
time interval Az. According to Eq. (2), this will raise the
temperature by AT=AQ/C,p=PAt/C,p. The temperature at
time step n+ 1 can now be found by multiplying Eq. (6) with
the inverse of matrix [w"*!], and adding the effect of this
additional heat source such that

[T =[w™ T W AT+ [AT]. ™)

[w*'] and [w"] are constant for a given system if « and C,
in Eq. (5) are assumed to be independent of temperature. If
that is a good approximation, [«*']"'[ "] can be computed
up front, and the method then proceeds efficiently from one
time step to the next by the simple matrix multiplication of
Eq. (7) (see Fig. 1), yielding the time-dependent spatial tem-
perature distribution. Sections II A 1-II A 3 describe the
structure of the p matrices, the implementation of boundary
and initial conditions, and the choice of time step in the
numerical evaluation of Eq. (7).

1. Structure of the u-matrices

The w-matrices in Eq. (7) are sparse and have a band-
diagonal structure with nonzero elements only on the diago-
nal and on two diagonals on either side. The bandedness is a
result of the heat flow being local, i.e., heat only flowing
between neighboring cells. A sparse matrix with a band-
diagonal structure is computationally easier to invert than a
dense matrix; however, we have not taken advantage of this
property in the numerical implementation used in this study
and have used a standard matrix inversion routine.

Let us denote the diagonal and off-diagonal elements of
the w-matrices in Eq. (4) by aq and a,, respectively. For the
[ and [w"] matrices, these elements then become

n+1

agt =14+2u, dt'=- w2, (8a)

ag=1-2u, daj=pu?2. (8b)

To illustrate the structure of the resulting w-matrices, let us
consider a simple 2D system consisting of 4 X4 cells. The
right hand side of Eq. (6) can be explicitly written as shown
in Fig. 2 using the definitions in Eq. (8b). The matrix struc-
ture of the left-hand side of Eq. (6) is identical but uses the
elements defined in Eq. (8a). Note that the u-matrix consists
of N rows of N rows; i.e., it has one row for every cell of the
N XN Cartesian grid.

2. Boundary conditions and initial conditions

One can choose either Dirichlet boundary conditions,
which hold the boundary at a given temperature, or Neu-
mann boundary conditions, which hold the boundary at a
given heat flow rate (e.g., imperfect insulation). Here we
choose Dirichlet boundary conditions, which place the sys-
tem in a bath with infinite heat capacity and a fixed tempera-
ture; i.e., the temperature of the cells around the perimeter of
the N X N system does not change. Specifically, these are the
cells in the top row, bottom row, left column, and right col-
umn of the NXN Cartesian grid (see Fig. 1). The matrix
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FIG. 2. Structure of the matrices on the right side of Eq. (6) for the example
of a 4 X4 Cartesian grid. Zero elements are represented by dots for clarity.

elements for these cells have to be modified to ensure con-
stant temperature. Specifically, the first and last N rows of
the above u-matrix (see Fig. 2) correspond to the top and
bottom rows of the NX N Cartesian grid, respectively, and
the respective diagonal elements are replaced with 1 and the
respective off-diagonal elements with 0. In each of the other
blocks of N rows, the first row and last row correspond to the
left and right columns of the N X N Cartesian grid, respec-
tively; again, the respective diagonal elements are replaced
with 1 and the respective off-diagonal elements with O to
ensure constant temperature. With these boundary condi-
tions, the matrix structure of the right side of Eq. (6) (see
Fig. 2) is modified to the structure shown in Fig. 3.

Initial conditions are provided in the temperature vector
TE ; for all grid locations (i,/) at t=0. This initial temperature
distribution can be arbitrary. However, it is important to note
that the temperature of the perimeter cells of the N XN Car-
tesian grid will be held constant at their respective Tf) ; value
by the boundary conditions defined above.
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FIG. 3. Structure of the matrices on the right side of Eq. (6) for the example
of a 4 X4 Cartesian grid and using the Dirichlet boundary conditions of Sec.
II A 2. Zero elements are represented by dots for clarity.
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3. Choice of time step

The numerical stability of the CN method does not de-
pend on the size of the time step At*' However, there is an
upper limit for Az. Note in Eq. (8) that the diagonal elements
should be sufficiently close to 1. Rather than choosing At, it
is preferable to fix u and calculate Ar from Eq. (5); that is,

2
At:w' (9)

K

With proper choice of w, this approach guarantees numerical
stability and the maximum possible Az for the given system.
The range of w=0.1,...,0.2 has proven to be a practical
choice.

B. 2D heat equation with laser-induced heating or
cooling

In order to calculate [7"*'] in Eq. (7), we must first
obtain the rate of internal heat generation P. Assume a two-
level system that is optically pumped and that can decay
radiatively and nonradiatively. The fraction & of the laser
excitation energy is converted to heat (nonradiative relax-
ation) while the fraction 1—g& undergoes radiative relaxation
as either stimulated or spontaneous emission. Note that
stimulated emission is, by definition, resonant with the laser
and does not generate any heat. The rate of internal heat
generation P(x,y,t) is therefore proportional to the sponta-
neous emission rate according to

P(x,y,1) = nz(t)ANaVs}%, (10)
P

where n,(r) is the upper level population, A is the spontane-
ous decay rate, and N, is the number density of absorbers. In
the CN scheme, the excited volume V in Eq. (10) corre-
sponds to the volume of one cell, V=2z,(Ad)?, where 275
=2mw}/ A, is the confocal parameter for a Gaussian beam.”

Following the analysis of a two-level system allowing
for saturation by van Dijk,24 the upper level normalized
population is given by

ny(t) = ——{1 - exp[- (gw, + A)r]}, (11)
gw,

+A

for continuous constant pumping and the initial condition
n,(0)=0. In Eq. (11) we have made use of the fact that the
Einstein coefficients for absorption (B;,) and stimulated
emission (B,,) are related by B,,/B,=g,/g, and have intro-
duced g=1+(g,/g,), where g, and g, are the degeneracies of
the lower and upper levels, respectively. The degeneracy is
completely lifted in the low coordination symmetries of the
glasses studied here, and we therefore assume g, =g, for our
computations. In Eq. (11), the absorption rate constant w, is
given by

w O T) = %Ip(x,y,t), (12)
where Ip(x,y,t) is the laser irradiance (in W m™2) and
o,(\,T) is the absorption cross section (in m™2). Note that in
steady state (r— o) and for high irradiance (Ip— %) we have
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FIG. 4. Schematic of energy levels in Yb**-doped ZBLAN showing the
ideal case of laser cooling occurring between the two multiplets of Yb**.
The dopant is excited by the pump laser from the top of the ground state
multiplet (°F;,,) to the bottom of the excited-state multiplet (*Fs,). Vibra-
tional energy is absorbed from the host during thermalization in both mul-
tiplets, and, as a result, the material cools.

w,— % and n,— 1/2; i.e., at most half of the absorbers can
be excited. This properly accounts for saturation and is con-
sistent with the fact that sustained inversion cannot be
achieved in a two-level system under adiabatic conditions.”
The irradiance at a CN cell at location (x,y) is given by

P(x,y)
(Ad)*’

E(x,y,1) = Py(1) (13)
where the incident laser power P(f) (in watts) is chosen to
be a step function at #=¢,. The normalized transverse spatial
laser power distribution ¢(x,y) in Eq. (13) is assumed to be
Gaussian; i.e.,

Ad)?
2) exp(=2r4w}), (14)
0

2(
Plx.y) =
where r>=x*+y?. Equation (14) places the center of the
Gaussian beam at the origin. To ensure energy conservation,
the physical size of the CN grid has to be chosen such that it
substantially contains the Gaussian beam profile; i.e.,

NAd/2
f d(r)dr=1. (15)

0

C. Model of differential luminescence thermometry in
solid-state optical refrigerators

By far, the most widely studied solid-state optical refrig-
erator system is Yb** doped into the fluorozirconate glass
ZBLAN.' The schematic in Fig. 4 illustrates the concept of
solid-state laser cooling using Yb**. A pump laser is tuned to
a wavelength (\,,) that is longer than the mean luminescence
wavelength ():f), and the energy difference corresponds to
the amount of heat that is extracted as heat from the solid for
each excitation/emission cycle. The respective laser-cooling
efficiency of this ideal case is given by 770001=()\p—):f)/ ):f.
Note that the thermal population of the crystal field levels in
the excited state is temperature dependent, causing Xf to red
shift and 7, to decrease as temperature decreases.
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In a real system, the excited state may have a net quan-
tum efficiency n(T,)\,,), which is less than unity because of
nonradiative processes occurring as a result of interactions
with impurities as well as background absorption due to di-
rect absorption of pump energy by the impurities. Note that
7 is a function of both temperature and pump wavelength not
only due to its dependence on the resonant absorption, but
also due to the spectral overlap between the rare-earth ion
emission and the impurity absorption.27 Incorporating these
effects, the cooling efficiency thus becomes

7](T9 )\p))\p - Xf(T)
M)

WCOOI(T) = (16)

As the temperature is lowered, ):f red shifts, 7., decreases,
and there is a temperature at which laser-induced heating and
laser-induced cooling are exactly balanced; i.e., 7.,,=0.
This temperature is referred to as the zero-crossing tempera-
ture (Tcr), and it can be used as a relative measure of the
concentration of impurities and the overall quality of a laser-
cooling material. The net quantum efficiency at 7,ct can

thus be calculated from n(TZCT,kp)=Xf(TZCT)/Ap. At tem-
peratures above Tycr, Moo= 0 and heat is extracted from the
solid, while below T,ct, 7.0 <0 and there is net heating of
the solid. The corresponding laser-induced rate of cooling or
heating is then given by Eq. (10). The factor & in Eq. (10)
corresponds to the negative cooling efficiency (i.e., heat gen-
eration) of Eq. (16). Thus, in the context of optical refrigera-
tion of solids, laser-induced internal cooling is simply con-
sidered as negative heating, e=—17...

Laser-induced temperature changes inside a solid can be
measured by observing the subtle changes that occur in the
material’s luminescence spectrum as the laser is turned on.
This technique is known as differential luminescence ther-
mometry (DLT); specifically, we have developed TBDLT as
a sensitive, noncontact method to characterize laser-induced
temperature changes in solids.”® TBDLT infers changes in
the local sample temperature from changes in the lumines-
cence spectrum that occur during the laser-induced cooling
process, and it provides a temporally and spatially resolved
temperature measurement that allows for rapid performance
screening of laser-cooling samples. Here, a brief description
of TBDLT is presented, and it will be used in Sec. III to
validate the model developed in Secs. II A and II B.

The luminescence spectrum of Yb** in ZBLAN glass is
at a wavelength near 1 wm. As shown in Fig. 5, it consists of
two wavelength regions for which the luminescence intensity
increases (A and C) and two wavelength regions for which
the luminescence intensity decreases (B and D) as the tem-
perature is raised. Regions A and D are spectrally fairly
broad and can be easily selected by commercial bandpass
interference filters. The TBDLT method chooses these two
bands, A and D, and detects changes in their relative inten-
sity to obtain a measure of the associated internal tempera-
ture change. At a given location (x,y) with temperature 7, ,,
the TBDLT signal is defined as »
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FIG. 5. ?Fs5, — *F,), luminescence spectra of Yb** in ZBLAN glass at vari-
ous temperatures. The gray areas indicate wavelength regions in which the
luminescence intensity increases (A and C) and regions where the lumines-
cence intensity decreases (B and D) as the temperature is raised. Portions of
regions A and D can be selected with commercially available interference
filters.

_ IZ(Tx,y’t) - I*D(Tx,y’t)
(T, . 0) + I(T, 1)

T, 1) (17)

)2
The luminescence intensities 1,(7, ,,7) and Ij,(T,,?) in Eq.
(17) are integrated over the product of the luminescence
spectrum I(\,T) and the bandpass filter transmission spec-
trum 6(\); i.e.,

IZ(Tx,y):fI(A’Tx,)')aA(A)dx,

Ip(T.,) = f I\ T, ) 6p(N)dN. (18)

The experimental implementation of the TBDLT method
uses a gain-balanced amplified pair of photodetectors for the
simultaneous measurement of I,(7), I,(T), and I,(T)
—I5(T), and it requires that the optical powers reaching the
two detectors are balanced.”’ In practice this is achieved by
simply detuning the optical alignment of the band with the
larger signal to match the signal of the other band. Here, let
us introduce a factor ¢ by which we can scale Ij,(7) such that
it matches 7;(7) at the bath temperature 7y; i.e.,

_ JINT) 8,(\) N

= JIONTo) 0p(N)dN (19)

Finally, since luminescence is collected from the entire
pumped volume, we must account for the temperature distri-
bution in the pumped volume not being uniform. The mea-
sured TBDLT signal, Z(7,1), is therefore obtained by inte-
gration of &T,,.,t) [Eq. (17)] over the transversal plane.
Note that the luminescence intensity is proportional to the
excited-state population n,(x,y,#) [Eq. (11)], and &(T, 1) is
thus weighted by n,(x,y,7) according to

E(T,1) =f f ny(x,y,0)&(T, ,,1)dxdy, (20)

where T becomes the average temperature in the optically
excited volume. With these definitions, we obtain Z(T
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<T,) <0, E(T=T,)=0, and Z(T>T,)>0. That is, the TB-
DLT signal will become positive/negative upon laser-induced
heating/cooling of a system that was initially thermalized at
Tp.

lll. RESULTS AND DISCUSSION

In the following, the model developed in Sec. II is ap-
plied to optical refrigeration in Yb**-doped ZBLAN glass as
both an example and a quantitative validation. In Sec. IIT A
we will first present the relevant material parameters of
Yb**-doped ZBLAN glass that are required for the calcula-
tion of laser-induced temperature changes (Sec. Il B) using
the model developed in Sec. II. Section III B presents a cal-
culation of the laser-induced temperature distribution in
ZBLAN:Yb?* as a function of time, and Sec. ITI C shows the
transient response of the respective TBDLT. Finally, a dis-
cussion of sample size effects is given in Sec. III D.

Two Yb**-doped fluorozirconate glass samples were
used for the measurements in this study. Sample I was a
ZBLANI: 1%Yb>*
(ZrF4—BaF,—LaF;—AlF;—NaF-InF;—YbF;) glass fabri-
cated in our laboratory from purified precursor materials.
Sample 1T was a ZBLAN:2%Yb?" glass obtained from IPG
Photonics and known to be a good laser cooler. The samples
were mounted in a liquid-nitrogen flow cryostat in close ther-
mal contact with the cold finger. The sample temperature was
measured with a miniature temperature sensor mounted di-
rectly on the sample surface. Optical excitation was achieved
by a single-pass geometry with focusing the laser into the
center of the sample.

A. Spectroscopic and material properties of
ZBLAN: Yb3* for thermal diffusion modeling

Several spectroscopic parameters of ZBLAN:Yb3* are
needed for the thermal diffusion calculations. The
temperature-dependent absorption cross section at the pump
wavelength [Eq. (12)] was obtained by fitting a cubic poly-
nomial to the measurements of the absorption cross section
at \,=1020.6 nm at different temperatures [see Fig. 6(a)].
Likewise, the temperature dependencies of the mean lumi-

nescence wavelength Xf [in Eq. (16)], as well as the lumines-
cence intensity integrals JIN,T)0,(N)d\ and
JIN,T)0,(N)dN [Eq. (18)], were obtained by fitting cubic
polynomials to respective experimental data obtained at dif-
ferent temperatures [see Figs. 6(b) and 6(c)]. Table I summa-
rizes the respective polynomial coefficients. Table I summa-
rizes the material properties typical of ZBLAN glass as well
as the laser and computational parameters specific to the
present experiments.

B. Laser-induced temperature changes in ZBLAN: Yb3*

The thermal response [Eq. (7)] and the resulting lumi-
nescence response [Eq. (20)] of a solid under Gaussian beam
irradiation can now be calculated. As an example, Fig. 7
shows four calculations of the time-dependent transversal
temperature distribution (at Tp=300 K) for four hypothetical
samples of ZBLAN: Yb** having different net quantum effi-
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FIG. 6. Temperature dependence of spectroscopic parameters of
ZBLAN:Yb**: (a) absorption cross section a,(\,T) at \,=1020.6 nm (Ref.

26), (b) mean luminescence wavelength ):f derived from luminescence spec-
tra at different temperatures, and (c) spectral overlap integrals
JION,T)6,(N)dN\ (circles) and [I(N,T)6,(N)d\ (squares) [see Eq. (18)]. The
solid lines in each of the plots are least-squares fits to a cubic polynomial,
and the respective parameters are summarized in Table 1.

ciencies (=1, 0.98, 0.97, and 0.94). Continuous wave (cw)
laser excitation with a Gaussian beam profile begins as a step
function at =0 in these calculations. The lower part of Fig.
7 shows the corresponding change in temperature at the cen-
ter of the Gaussian beam over the course of 5 s. The top row
in Fig. 7 represents the case of an ideal ZBLAN:Yb**
sample that has »=1 and exhibits laser-induced cooling. For
this case, the center of the pumped area cools from 300 to
299.587 K during the first 20 ms and reaches a steady-state
temperature of 299.18 K (at r=5 s). Samples with lower net
quantum efficiency show less laser-induced cooling or even
laser-induced heating, as illustrated for the 7=0.94 case (Fig.
7, bottom row). Note that internal heat generation is essen-
tially zero at 7=0.97. This is expected from Eq. (16): 7., is

zero for 77=Xf/)\p=0.9718; ie., 300 K is the T -t for
ZBLAN:Yb** with =0.9718 pumped at 1020.6 nm. Net
laser-induced heating thus occurs for 7<<0.97.

C. Transient response of ZBLAN: Yb3* luminescence

The TBDLT transients measured for samples I and II at
various bath temperatures are shown in Fig. 8. Laser-induced
cooling is evident by a decrease in the TBDLT signal Z(7,1).
The dependence of the TBDLT signal as a function of time is
linear in the double-logarithmic representation of Fig. 8, in-
dicating that it follows a simple power law according to

E(t) o 1. (21)

The slope 1 of the line in double-logarithmic representation
is a metric for the laser-induced temperature change, and it
can be used as a figure of merit for the laser-cooling perfor-
mance of the material at a given bath temperature. Laser-
induced cooling or heating is therefore present if 4<<0 or
U >0, respectively. Figure 9 presents the ¥ values obtained
from fits of Eq. (21) to the experimental data (Fig. 8), and
T,ct was estimated to be 158 and 238 K for sample II (filled
squares) and sample I (filled circles), respectively. At these
temperatures, the mean luminescence wavelengths are found
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TABLE 1. Coefficients obtained from least-squares fits of the function y(7)=ay+a,;T+a,T*+a;T* to the experi-

mental data shown in Fig. 6.

Absorption cross section, o, Mean luminescence wavelength, Xf Band A Band D
Coefficient (m?) (nm) (a.u.) (a.u.)
a, 1.29X 10726 1011.33 —2.58 0.669
a, -3.90x 10728 —0.130 0.030 0.071
a, 3.09x 10730 32x107* -4.64%107° -291x10™
a, —4.46x 1073 -3.52% 1077 4.09%x10%  3.73x1077

to be 995.9 and 993.96 nm, respectively [see Fig. 6(b) and
Table IT]. With a fixed laser excitation wavelength of 1020.6
nm, the net quantum efficiencies # at T,cp are thus calcu-
lated to be 0.9758 (sample II) and 0.9739 (sample 1) [Eq.
(16)]. Figure 9 also shows O values calculated from the
model presented in Sec. II [Eq. (20)]. The calculations as-
sumed the above net quantum efficiencies, and a scale factor
was applied to the experimental data to match the absolute
value of 9 at 300.25 (sample I) and 257.05 K (sample II).
The model provides a good quantitative description of the
experimental data and thus serves as a useful tool to predict
the laser-cooling performance of other materials.

An interesting feature is observed at low temperatures
for sample II. ¥ and thus laser-induced heating reach a maxi-
mum at 133 K. This maximum is the result of two counter-
acting effects. On the one hand, the laser-cooling efficiency
gradually decreases with decreasing temperature [Eq. (16)]
causing more of the absorbed power to be converted to heat
[Eq. (10)]. On the other hand, the absorption coefficient at
the pump wavelength decreases rapidly with decreasing tem-
perature [Fig. 6(a)]. Therefore, T— 0 causes o,— 0 causing
the rate of internal heat generation P—0 and thus J—0, a
trend that is confirmed by the experimental data.

TABLE 1II. Summary of key parameters characterizing the ZBLAN: Yb3*
glass, the laser excitation, and the CN computation.

Parameter Symbol Value Units Ref.
Material parameters

Thermal conductivity K 0.77 Wm' K 26

Density p 4445 kgm™ 26

Specific heat C, 670 Jkg' Kt 26

Specific heat capacity C,=C,p 29782x10° Jm>K!

Yb3* ion density (1 mol %) N, 1.899 X 10% m™3 27
Radiative relaxation rate w, 540 57! 27
Internal net quantum efficiency n Varied

Laser parameters
Laser power v, 3.75 w
Laser wavelength A, 1020.6 nm
Beam waist wo 10 pmm
Laser on time to 0 S

CN parameters

Square lattice constant Ad 50 pmm
Square grid elements NXN 71X 71
CFL number N 0.2

D. Sample size and associated characteristic time
constants

The model also allows the study of the dependence of
the transient response on the size of the sample. This is il-
lustrated in Fig. 10, which shows calculated TBDLT tran-
sients over the course of 60 s for ZBLAN:Yb** with 7
=0.9739 and various 2D sample sizes. Three regimes are
found. There is an initial fast component that is independent
of sample size and that has a time constant governed by the
excited-state lifetime of the rare-earth ion. The respective
time constant is characteristic of how quickly heat is re-
moved from (cooling) or deposited into (heating) the sample
in the small excitation volume defined by the focused laser.
This time constant is on the order of only a few milliseconds
in ZBLAN:Yb** and was not resolved in the measurements
shown in Fig. 8. The initial fast component is followed by a
slower component, the duration of which depends on the
sample size. The time constant of this component is gov-
erned by the heat capacity and thermal conductivity of the

7=0.98

n=0.97

n=0.94

AT [degrees]

-0.841

Time [seconds]

FIG. 7. Spatial (top) and temporal (bottom) representations of calculated
laser-induced heat diffusion in ZBLAN:1%Yb** glass pumped at 1020.6
nm. The calculation was performed using the 2D CN method in a 3.55
%X 3.55 mm? grid (see Sec. II) and the parameters of Tables I and II. The
internal net quantum efficiency % is reduced from top to bottom in the
figure. The gray scale covers the range of 299.0 K (black) to 300.1 K (white)
with the bath temperature held at Ty=300 K.
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FIG. 8. Experimental TBDLT transients of ZBLAN:Yb** samples I and 11
(see Sec. III A) recorded at different bath temperatures, T. The solid lines
are fits to Eq. (21), and the respective J-values are shown in Fig. 9.

material and extends for several seconds for ZBLAN:Yb**
samples with cross-sectional areas of >5 mm?. This is the
time regime in which the measurements of this study were
carried out (Fig. 8) and from which the TBDLT parameter
was calculated (Fig. 9). Finally, the thermal processes in-
duced by a cw laser, combined with the sample surface being
held at the constant bath temperature T\, produces a steady-
state temperature distribution (and thus a constant TBDLT
signal) after some longer time. The time period for this
steady state to develop in larger ZBLAN samples is on the
order of many seconds and is determined by the total amount
of heat being deposited into the sample (i.e., sample size)
and the thermal properties (thermal conductivity and heat
capacity). Note that the initial fast temporal response of the
0.55%0.55 mm? grid shown in Fig. 10 is typical of what
would be expected for a sample with a small cross-sectional
area such as a bare optical fiber. In the case of bulk
ZBLAN:Yb**, the measured TBDLT transients during the

—o— Sample II Calc.,

[ —o— Sample I Calc.

0.151 - = Sample IT Exp.
0.104 - e Sample I Exp.

' 0.05

= - \o
EPSLR) BT

0
-0.05 4 e &
=
0.10 -

100 125 150 175 200 225 250 275 300

Temperature [K]

FIG. 9. TBDLT parameter ¥ [Eq. (21)] for experimental data (filled sym-
bols) and calculated data (open symbols) for samples I and II (see Sec. III).
The Tycr is found to be 238 and 158 K for samples I and II, respectively.

J. Appl. Phys. 107, 063108 (2010)

x10” [AU]

0.55x 0.55 mm?
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2.05x 2.05 mm?
-6 2.55% 2.55 mm?
3.05x 3.05 mm?
3.55x3.55 mm?

TBDLT Signal,

T T

T
0.01 0.1 1 10
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FIG. 10. TBDLT transients for ZBLAN: Yb** calculated from Eq. (20) with
7=0.9739 and varying the sample size. The spatial resolution was held
constant (50X 50 um? grid element size), and the sample size was varied
via the grid dimension N. Material parameter values from Tables I and II
were used.

first few seconds are well described by assuming a sample
size larger than 3 X3 mm? (see Fig. 10), which is consistent
with the transversal dimension of the actual samples used in
our experiments.

IV. CONCLUSIONS

We have presented a quantitative model that (1) de-
scribes the time-dependent laser-induced temperature distri-
bution in a solid and (2) correlates the laser-induced tem-
perature changes with changes in luminescence properties.
The implicit CN scheme used for the computational evalua-
tion of the heat equation was found to be numerically stable
and efficient, allowing for the rapid exploration of the pa-
rameter space. As an example, the model was validated for
TBDLT in ZBLAN:Yb** optical refrigerator samples. The
laser-cooling performance as a function of temperature was
accurately predicted by the model, allowing the T,ct and net
quantum efficiency to be calculated. Furthermore, the model
revealed the presence of three distinct time constants that
govern the luminescence response in optical refrigerators
upon laser excitation. The tools developed in this study are
general and can be readily applied to other materials and
temperature-dependent  properties, enabling quantitative
studies of light-matter interactions in a wide range of mate-
rials and devices.
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