Cross Correlators

Greg Taylor
University of New Mexico
Spring 2011
Outline

- The correlation function
- What is a correlator?
- Simple correlators
- Sampling and quantization
- Spectral line correlators
- The EVLA correlator in detail

This lecture is complementary to Chapter 4 of ASP 180 and is based on a lecture by Walter Brisken
The [old] VLBA Correlator

G. Taylor, Astr 423 at UNM
For continuous functions, f and g, the cross-correlation is defined as:

$$(f \ast g)(t) \overset{\text{def}}{=} \int_{-\infty}^{\infty} f^*(\tau) \, g(t + \tau) \, d\tau,$$

where f^* denotes the complex conjugate of f.
The Correlation Function

\[C_{ij}(\tau) = \langle v_i(t)v_j(t + \tau) \rangle_T \]

- If \(i = j \) it is an auto-correlation (AC). Otherwise it is a cross-correlation (CC).
- Useful for
 - Determining timescales (CC and AC)
 - Motion detection (2-D CC)
 - Optical character recognition (2-D CC)
 - Pulsar timing / template matching (CC)
What is a Correlator?

A correlator is a hardware or software device that combines sampled voltage time series from one or more antennas to produce sets of complex visibilities, V_{ij}.

- Visibilities are in general a function of
 - Frequency
 - Antenna pair
 - Time
- They are used for
 - Imaging
 - Spectroscopy / polarimetry
 - Astrometry
A Real (valued) Cross Correlator

\[C_{ij}(\tau) = \langle v_i(t)v_j(t + \tau) \rangle_T \]

\[v_i(t) \quad \tau \quad v_j(t) \]

\[\frac{1}{T} \int_0^T (\cdot) dt \]

\[C_{ij} \]
What astronomers really want is the complex visibility

$$V_{ij} = \langle E_i(t) E_j^*(t + \tau) \rangle$$

where the real part of $E_i(t)$ is the voltage measured by antenna i.

So what is the imaginary part of $E_i(t)$?

It is the same as the real part but with each frequency component phase lagged by 90 degrees.

$$E_i(t) = v_i(t) + \frac{i}{\pi} \int_{-\infty}^{\infty} \frac{v_i(t')}{{t - t'}} \, dt'$$
\[V_{ij} = \langle v_i(t)v_j(t + \tau) \rangle + i \langle \mathcal{H}[v_i(t)]v_j(t + \tau) \rangle \]
• \(\{v_i(t)\} \) are real-valued time series sampled at “uniform” intervals, \(\Delta t \).

• The sampling theorem allows this to accurately reconstruct a bandwidth of \(\Delta \nu = \frac{1}{2\Delta t} \).

• Sampling involves quantization of the signal
 - Quantization noise
 - Strong signals become non-linear
 - Sampling theorem violated!
Quantization Noise

Quantization efficiency

<table>
<thead>
<tr>
<th>N levels</th>
<th>$\eta_Q(f = 1)$</th>
<th>$\eta_Q(f = 2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.64</td>
<td>0.74</td>
</tr>
<tr>
<td>3</td>
<td>0.81</td>
<td>0.89</td>
</tr>
<tr>
<td>4</td>
<td>0.88</td>
<td>0.94</td>
</tr>
<tr>
<td>∞</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

(For normal-distributed v)
Automatic Gain Control (AGC)

- Normally prior to sampling the amplitude level of each time series is adjusted so that quantization noise is minimized.
- This occurs on timescales very long compared to a sample interval.
- The magnitude of the amplitude is stored so that the true amplitudes can be reconstructed after correlation.
The Correlation Coefficient

- The correlation coefficient, ρ_{ij} measures the likeness of two time series in an amplitude independent manner:

$$
\rho_{ij} = \frac{|V_{ij}|}{\sqrt{V_{ii} V_{jj}}}
$$

- Normally the correlation coefficient is much less than 1

- Because of AGC, the correlator actually measures the correlation coefficient. The visibility amplitude is restored by dividing by the AGC gain.
Van Vleck Correction

- At low correlation, quantization *increases correlation*
- Quantization causes predictable non-linearity at high correlation V_{ij}
- Correction must be applied to the real and imaginary parts of separately
 - Thus the visibility phase is affected as well as the amplitude

![Graph showing Van Vleck Correction](image-url)
The Delay Model

- τ is the difference between the geometric delays of antenna j and antenna i. It can be + or -.
- The *delay center* moves across the sky
 - τ is changing constantly
- Fringes at the delay center are stopped.
 - Long time integrations can be done
 - Wide bandwidths can be used
- Simple delay models incorporate:
 - Antenna locations
 - Source position
 - Earth orientation
- VLBI delay models must include much more!
Pulsar Gating

- Pulsars emit regular pulses with small duty cycle
- Period in range 1 ms to 8 s; \(\Delta t \ll P_{\text{pulsar}} < T \)
- Blanking during off-pulse improves sensitivity
- Propagation delay is frequency dependent
Spectral Line Correlators

- Chop up bandwidth for
 - Calibration
 - Bandpass calibration
 - Fringe fitting
 - Spectroscopy
 - Wide-field imaging
 - (It's all Spectral Line these days)

- Conceptual version
 - Build analog filter bank
 - Attach a complex correlator to each filter
Practical Spectral Line Correlators

- Use a single filter / sampler
 - Easier to calibrate
 - Practical, up to a point

- The FX architecture
 - F : Replace filterbank with digital Fourier transform
 - X : Use a complex-correlator for each frequency channel
 - Then integrate

- The XF architecture
 - X : Measure correlation function at many lags
 - Integrate
 - F : Fourier transform

- Other architectures possible
The FX correlator
FX Correlators

- Spectrum is available **before integration**
 - Can apply fractional sample delay per channel
 - Can apply pulsar gate per channel
- Most of the digital parts run N times slower than the sample rate
- Fewer computations (compared to XF)
FX Spectral Response

- FX Correlators derive spectra from truncated time series

\[v(\nu) = \mathcal{F} \left[v(t) \cdot \mathcal{F} \left(\frac{t}{N \Delta t} \right) \right] \]
\[= \mathcal{F} \left[v(t) \right] \star \mathcal{F} \left[\mathcal{F} \left(\frac{t}{N \Delta t} \right) \right] \]
\[\propto \mathcal{F} \left[v(t) \right] \star \text{sinc} \left(N \Delta t \nu \right) \]

- Results in convolved visibility spectrum

\[
V_{ij}(\nu) = \left\langle (\mathcal{F}[v_i(t)] \star \text{sinc}(N \Delta t \nu)) \left(\mathcal{F}[v_j(t)] \star \text{sinc}(N \Delta t \nu) \right)^* \right\rangle \\
= \left\langle \mathcal{F}[v_i(t)] \mathcal{F}[v_j(t)]^* \right\rangle \star \text{sinc}^2 (N \Delta t \nu)
\]
FX Spectral Response (2)

5% sidelobes
VLBA Multiply Accumulate (MAC) Card

G. Taylor, Astr 423 at UNM
The XF Correlator

\[v_i(t) - N \Delta t \]

\[v_j(t) \]

\[\tau - N \Delta t \]

\[\Delta t \]

\[\Delta t \]

\[\Delta t \]

\[\int dt \]

\[\int dt \]

\[\int dt \]

\[\int dt \]

\[\{V_{ij}(\nu_k) \mid k = 1 \ldots N\} \]
XF Spectral Response

- XF correlators measure lags over a finite delay range

\[V_{ij}(\tau) = \langle v_i(t)v_j(t + \tau) \rangle \cdot \mathcal{F} \left(\frac{t}{N\Delta t} \right) \]

- Results in convolved visibility spectrum

\[V_{ij}(\nu) = \mathcal{F} \left[\langle v_i(t)v_j(t + \tau) \rangle \cdot \mathcal{F} \left(\frac{t}{N\Delta t} \right) \right] \]

\[= \mathcal{F} \left[\langle v_i(t)v_j(t + \tau) \rangle \right] \ast \text{sinc} (N\Delta t \nu) \]
XF Spectral Response (2)

22% sidelobes!
Hanning Smoothing

- Multiply lag spectrum by Hanning taper function

\[H(\tau) = \frac{1}{2} \left(1 + \cos \frac{\pi \tau}{N \Delta t} \right) \]

- This is equivalent to convolution of the spectrum by

\[H(\nu) = \delta(\nu) - \frac{1}{2} \delta \left(\nu - \frac{1}{2N \Delta t} \right) - \frac{1}{2} \delta \left(\nu + \frac{1}{2N \Delta t} \right) \]

- Note that sensitivity and spectral resolution are reduced.
Hanning Smoothing (2)

2 chans wide

channel

amplitude

G. Taylor, Astr 423 at UNM
VLA MAC Card

G. Taylor, Astr 423 at UNM
Basic Correlator Stages for the LWA

1. Correlate LWA-1 beams with LWA-2 "mini" station
2. Digitize a single VLA dish and correlate with LWA-1
3. Feed LWA-1 signal into EVLA correlator
4. Correlate ~10 LWA Phase II stations (the "LWIA")
5. Correlate full LWA (up to 53 stations)
Some Potential Correlator Options

• Software (up to ~10 stations?)
 - SoftC (JPL)?
 - DifX software correlator?
 - Custom software correlator?

• Hardware (for 10+)
 - GPU-based correlator?
 - BEE2-based (FPGA) correlator?
JPL’s SoftC Correlator

- Software XF correlator, written by Steve Lowe at JPL.
- Available at no cost.
- Flexible: SoftC can correlate 1, 2, 4, and 8-bit sampled data, upper, lower or double (I/Q) sideband data, using either of two sample encoding schemes.
- Extensively tested, mission critical software.
- Mature: has been around several years.
- Input/Output:
 - Works on disk data files, not live data streams.
 - Requires small format translators to be written.
- Requires a computer cluster (e.g. Beowulf) to run on.
 - Recent single CPU can processes 8 lags of 1-bit sampled data at 10 MSamples/s, independent of sample rate.
BEE2-based Correlator

- BEE2: FPGA-based, scalable, modular, upgradeable signal processing system for radio astronomy developed at Berkeley
- BEE2&IBOB boards available now
- Being used for several projects
 - 32-station FX correlator for Backer & Bradley’s EOR telescope (PAPER)
 - 128 Mchannel SETI spectrometer
- LWA would need a custom interface board
- Low hardware cost ($20k/BEE2 +$1k/IBOB + Infiniband switch)
 - 8 antenna correlator done with 4 IBOBs and 1 BEE2
- Real effort is in the FPGA “software”

IBOB: Internet BreakOut Board

BEE2: Berkeley Emulation Engine
Strawman LWA Correlator Plan

- Correlate LWA-1 with a single other antenna placed few hundred meters away.
 - Use SoftC, DifX, or simpler software correlator
- Reformat a single VLA dish and correlate with LWA-1
 - Use software correlator
- Correlate first 9 (or so) LWA stations
 - Use software correlator on a cluster
- Correlate full LWA
 - Expand BEE2 (or BEE3 by then) correlator to multiple boards
The EVLA WIDAR Correlator

• XF architecture duplicated 64 times, or “FXF”
 - Four 2GHz basebands per polarization
 - Digital filterbank makes 16 subbands per baseband
 - 16,384 channels/baseline at full sensitivity
 - 4 million channels with less bandwidth!

• Initially will support 32 stations with plans for 48

• 2 stations at 25% bandwidth or 4 stations at 6.25% bandwidth can replace 1 station input

• Correlator efficiency is about 95%
 - Compare to 81% for VLA

• VLBI ready
Further Reading

- http://www.nrao.edu/whatisra/mechanisms.shtml
- http://www.nrao.edu/whatisra/
- www.nrao.edu

- Synthesis Imaging in Radio Astronomy
- ASP Vol 180, eds Taylor, Carilli & Perley