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Soft gamma repeaters (SGRs) are “magnetars”, a small class of slowly spinning neutron stars

with extreme surface magnetic fields, B ∼ 1015 gauss.1–3 On 2004 December 27, a giant flare4

was detected from the magnetar SGR 1806–20,2 the third such event ever recorded.5,6 This

burst of energy was detected by a variety of instruments7,8 and even caused an ionospheric

disturbance in the Earth’s upper atmosphere recorded around the globe.9 Here we report

the detection of a fading radio afterglow produced by this outburst, with a luminosity 500

times larger than the only other detection of a similar source.10 From day 6 to day 19 after

the flare from SGR 1806–20, a resolved, linearly polarized, radio nebula was seen, expanding

at approximately a quarter the speed of light. To create this nebula, at least 4 × 1043 ergs of

energy must have been emitted by the giant flare in the form of magnetic fields and relativistic

particles. The combination of spatially resolved structure and rapid time evolution allows a

study in unprecedented detail of a nearby analog to supernovae and gamma-ray bursts.

Almost seven days after the 2004 Dec. 27 giant flare, we observed SGR 1806–20 with the Very Large

Array (VLA) in its highest resolution configuration (maximum baseline length 36.4 km). We identified a
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bright but fading radio source designated VLA J180839–202439 (see Fig. 1), whose position was consistent

with the previously reported localization11 of the SGR. This close juxtaposition, plus the transient nature

of the emission, makes it certain that VLA J180839–202439 is the radio afterglow of the giant flare from

SGR 1806–20. For a distance12 to SGR 1806–20 of 15d15 kiloparsecs, the 1.4-GHz flux density of this source

at first detection implies an isotropic spectral luminosity of 5d2
15 × 1015 W Hz−1, approximately 500 times

larger than the radio afterglow seen from SGR 1900+14 after a giant flare in 1998.10 No other magnetar has

been detected in the radio band, either in quiescence or during active periods.13,14

Given the very bright nature of this afterglow, we organized an international campaign over a broad

range of frequencies, 0.35 to 16 GHz, to track the decay of the radio emission of VLA J180839–202439.

Here we present a subset of these observations, made on days 6 to 19 after the giant flare, consisting of

images made using the VLA, the Australia Telescope Compact Array (ATCA), the Westerbork Synthesis

Radio Telescope (WSRT) and the Molonglo Observatory Synthesis Telescope (MOST) (see Supplementary

Methods for further information).

Figure 2 shows the combined light curves from these four telescopes covering the frequency range 0.84

to 8.5 GHz. These data are consistent with a sudden increase in the decay rate at day 8.8, as summarised

in Table 1 and shown by the linear fits in Figure 2. Specifically, if we assume that Sν ∝ tδ (where Sν

is the flux density at frequency ν), after day 8.8 we find an achromatic and rapid decline, δ ≈ −2.7, in

six independent frequency bands (a similarly rapid decline was also observed10 for the radio afterglow of

SGR 1900+14 in 1998). After carefully accounting for the instrumental response of the VLA antennas we find

that VLA J180839–202439 is significantly linearly polarized (see Fig. 3), which indicates that the emission

mechanism is synchrotron radiation. In our earliest observations this emission was already optically thin,

but showed clear evidence for a spectral steepening at high frequencies (see caption to Fig. 2). From day 11.2

onward, the spectrum was consistent with an unbroken power law from 0.84 to 8.5 GHz with α = −0.75±0.02

(where Sν ∝ να), again similar to the 1998 afterglow of SGR 1900+14. This implies a power-law energy

distribution of the emitting electrons, dN/dE ∝ E−p, with p = 1 − 2α = 2.50 ± 0.04.

Our highest resolution measurements are those made with the VLA at 8.5 GHz. The visibility data

from these observations, as shown for one epoch in Figure 1, demonstrate that VLA J180839–202439 is

resolved. A Gaussian is a good fit to the visibilities at each epoch, with no significant persistent residuals

(forthcoming higher resolution images from the VLBA and MERLIN will test the validity of this model).

Figure 3 demonstrates that from day 6.9 to day 19.7, the data were consistent with constant isotropic

expansion since outburst at a speed v/c = (0.27 ± 0.10)d15, with no noticeable deceleration as of day 19.7.

Other than in one observation at day 16.8, the source was significantly elliptical, with an axial ratio ∼ 0.6

and with the major axis oriented ≈ 60◦ west of north.

The spectrum and angular size of VLA J180839–202439 allow us to apply standard equiparti-

tion arguments for synchrotron sources,15 implying a minimum magnetic field Bmin = 0.02d
−2/7
15 [(1 +

κ)F100/f ]2/7θ
−6/7
50 gauss, where 100F100 mJy is the flux density of VLA J180839–202439 at 1.4 GHz, κ
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the ratio of the energy in heavy particles to that in electrons, f is the volume filling factor of magnetic

fields and relativistic particles, and 50θ50 mas is the source’s angular diameter. The minimum energy in

particles and magnetic fields in the emitting region is Emin = 4 × 1043 d
17/7
15 [(1 + κ)F100]

4/7f3/7θ
9/7
50 ergs.

The spectra show no evidence of self-absorption at frequencies above 0.6 GHz at early times,16 which is

consistent with these parameters provided that the emitting medium has a density n0
<
∼ 0.1f cm−3. We

can derive an additional independent energy estimate because of this rare opportunity to measure the ex-

pansion velocity directly. From the constant expansion speed observed over the first 20 days, we infer

Emin ≈ 6× 1042 Ω(n0/0.01 cm−3)(v/0.27c)5 ergs, where Ω is the opening solid angle of the ejected material.

Giant flares from magnetars are thought to result from shearing and reconnection of the extreme magnetic

fields near the neutron star surface.17,18 The inferred minimum energy in the radio nebula is somewhat smaller

than the emitted gamma-ray energy,7,8 but is much larger than the electron/positron pair luminosity that

would be expected to survive annihilation close to the magnetar. This suggests that baryons may have been

ablated off the surface by the intense illumination of the flaring magnetosphere.17,18 The radio nebula could

be naturally created by these baryons, which move off the magnetar at high velocity, >
∼ 0.5c, and then shock

the ambient medium.

The very steep decay of the radio emission after day 8.8, δ ≈ −2.7, combined with the observed sub-

luminal expansion velocity of VLA J180839–202439, is difficult to produce in standard gamma-ray burst

blast-wave models.19–21 The light curves may thus represent an adiabatically expanding population of elec-

trons accelerated at a particularly active phase, such as might occur if the ejecta collided with a pre-existing

shell. Such a shell is naturally made by SGR 1806–20 itself, since its quiescent wind22 of luminosity23

∼ 1034 ergs s−1 will sweep up a bow shock24,25 of stand-off distance ∼ 1016 cm (corresponding to an angular

extent ∼ 40d−1
15 mas) as it moves through the interstellar medium (ISM) at a typical neutron star velocity26

of ∼ 200 km s−1. The star’s motion creates a cigar-shaped cavity, mostly as a wake that trails the bow shock.

If this pre-existing shell is hit by ∼ 1043–1044 ergs of energy from the SGR’s giant flare, it will be shocked

and swept outward, resulting in a violent episode of particle acceleration that puts much of the energy into

a steadily expanding synchrotron-emitting shell 4 to 8 days after the giant flare. If we suppose that this

shell maintains constant thickness and constant expansion speed, then its volume, V , increases as t2, and

the magnetic field will decay as V −1/2 if directed within the tangent plane of the shell (V −2/3 if tangled in

three dimensions). This predicts a power law index for the radio decay δ = (7α − 3)/3 = −2.75 ± 0.05 (for

B ∝ V −1/2) or δ = (8α − 4)/3 = −3.33 ± 0.05 (for B ∝ V −2/3), consistent with the steep decay observed

here. The overall evolution can be complicated by the fact that the ejecta may be somewhat collimated,

and may hit the shell at different places and times — we defer detailed modelling to later papers, pending

higher resolution images from MERLIN and the VLBA.

At early times, the polarization position angle on the sky is approximately perpendicular to the axis of

the radio source (see Fig. 3), suggesting that the magnetic field in the emitting plasma (on average) is aligned

preferentially along this axis. This is consistent with the shock producing a preferred magnetic anisotropy
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in the shock plane. Between observations at days 11.0 and 13.7 the polarized fraction and polarization angle

both changed noticeably and a possible bump in the 1.4-GHz light curve is apparent; at day 16.8, the position

angle of the major axis of the source also changed considerably. These results suggest that a different part

of the outflow may have assumed the dominant role in the emission, as can occur if one region fades faster

than another.

The intensity of this radio afterglow confirms the conservative inference made from the X- and gamma-

ray detections7,8 that this event was >
∼ 2 orders of magnitude more energetic than the 1998 giant flare from

SGR 1900+14. It is difficult to attribute the difference to beaming effects, because the measured expansion

velocity (∼ 0.3c) appears to be modest. A release of > 1046 ergs in a single magnetar flare7,8 suggests

that a rather large fraction, ∼ 10 percent, of the total magnetic energy can be released at once. Continued

measurements of the morphology of the expanding radio source can provide an indication of whether the

energy release took place at a specific location on the star’s surface, or was a truly global phenomenon that

rearranged the crust or even the entire interior.
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FIGURE & TABLE CAPTIONS

TABLE 1: The rate of decay of the radio emission from VLA J180839–202439 at six independent frequencies.

At each frequency, ν, it has been assumed that the radio flux density decays as Sν ∝ tδν , with a break in the

power law index, δν , at time t0. To determine values of t0 and δν , a weighted least squares fit of a broken

power law has been applied to each data-set, with t0 a free parameter. In each case, the fit shown is the only

local minimum in χ2 which meets the requirements that there are at least two data-points on either side of

the break, the change in temporal index on either side of the break is larger than its uncertainties, and the

power-law fits on either side of the break meet at the break point. Before day 8.8, we find that δν possibly

decreases with ν; after day 8.8, the flux decays rapidly at all frequencies with a power-law index δ ≈ −2.7,

independent of ν.

FIGURE 1: Radio emission from VLA J180839–202439 at 8.5 GHz. The main panel shows the visibility

amplitude as a function of projected baseline length (in units of thousands of wavelengths; 100 kλ ≈ 3.5 kilo-

meters) at epoch 2005 Jan 06.8 (9.9 days after the giant flare), as seen by the VLA. The data have been

self-calibrated in phase until the solution converged, and each baseline has then been time-averaged over

the entire observation of duration 40 minutes. The error bars show the standard error in the mean of the

amplitude on each baseline. The decrease in amplitude as a function of increasing baseline length clearly

indicates that the source is resolved. The inset shows the image of the source at three epochs, smoothed

to a uniform resolution of 0.′′5 (indicated by the green circle at lower right). The origin of the coordinate

axes is the position of SGR 1806–20 measured with the Chandra X-ray Observatory,11 which has an un-

certainty of 0.′′3 in each coordinate. The false-colour representation is on a linear scale, ranging from –0.3

to the peak brightness of 53 mJy beam−1. The contours are drawn at levels of 20%, 40%, 60% and 80%

of this peak. No source is seen in archival 8.5-GHz data from 1994 March, down to a 5-σ upper limit of

0.1 mJy. In the days after the giant flare, a bright but rapidly fading source is now seen at this position. The

precise location of VLA J180839–202439 was determined by phase referencing to several nearby calibrators

with well-determined positions. Our best measurement was on Jan. 16.6, for which we measured a position

for VLA J180839–202439 (equinox J2000) of Right Ascension (R.A.) 18h08m39.s343 ± 0.s002, Declination

(Dec.) −20◦24′39.′′80 ± 0.′′04. The source’s proper motion over the time span presented in this paper is

−2.8 ± 6.5 mas day−1 in R.A. and −2.2 ± 6.5 mas day−1 in Dec.

FIGURE 2: Time evolution of the radio flux density from VLA J180839–202439. The x-axis indicates

days since the giant flare was detected from SGR 1806–20, on 2004 Dec 27.90 UT. The radio data originate

from ATCA, MOST and WSRT measurements made in six independent frequency bands. Each symbol

represents a different telescope, while each colour indicates a different frequency. Measurement uncertainties
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are indicated at the 1-σ level. Fits to the data are indicated by dashed lines, and represent the results of

applying the broken power-law model described in Table 1 to the data. Significant deviations from this fit

are seen at both 1.4 and 2.4 GHz, suggesting short-term time-variability in the source (most notably the

possible “bump” in the 1.4 GHz light curve seen with multiple telescopes on days 10–11 after the flare).

These data also allow us to compute the evolution of the radio spectral index, α (defined as Sν ∝ να). At

three epochs with good frequency coverage between 8.4 and 9.9 days after the flare, there is clear evidence for

a spectral break, from α ≈ −0.66 below ∼ 5 GHz to α ≈ −1.0 above. Other data cannot rule out this break

being present from day 6.9 (when the source was first detected) through to day 11.0. From day 11.2 onward,

the spectrum has been consistent with an unbroken power law from 0.84 to 8.5 GHz with α = −0.75± 0.02.

In addition to the data shown here, on 2004 December 29, we used the Parkes Radio Telescope at

1.4 GHz to search for radio pulsations from SGR 1806–20. For dispersion measures in the range 0 to

2000 parsecs cm−3, we found no pulsed signal at or near the star’s X-ray period2 of 7.5 sec down to a level

of ≈ 0.2 mJy (these data provide no constraint on the unpulsed flux).

FIGURE 3: Structural and polarization properties of VLA J180839–202439 as a function of time, as seen

with the VLA at 8.5 GHz. The x-axis indicates days since the giant flare. The uppermost panel plots the

radius of the source, determined by modelling27 the visibilities at each epoch as a two-dimensional Gaussian

function in the Fourier plane of arbitrary position, amplitude, diameter, axial ratio and orientation, and then

taking the geometric mean of the semi-major and semi-minor axes. The broken line shows a weighted linear

least squares fit to the data. The indicated expansion velocity assumes two-sided or isotropic expansion at a

distance of 15 kiloparsecs. The two panels below this show the axial ratio and position angle (measured north

through east) of this best-fit Gaussian at each epoch. The fourth panel shows the fractional linear polarization

of VLA J180839–202439 at 8.5 GHz. We find that the position angle of this linearly polarized emission is a

linear function of ν−2 at each epoch, indicating the presence of Faraday rotation from foreground magnetised

plasma. We measure a Faraday rotation measure (RM) of +272± 10 rad m−2 at multiple epochs, similar to

the value RM = +290 ± 20 rad m−2 obtained for the adjacent calibrator, MRC B1817–254, and typical of

RMs seen through the Galactic plane.28 Any contribution to the RM from the immediate environment of the

magnetar must thus be small. The fifth panel shows the position angle of the electric field vector of linear

polarization from VLA J180839–202439 after correction for this foreground Faraday rotation. Uncertainties

at the 1-σ level are indicated for all data.
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Table 1.
ν (GHz) t0 (days) δν (t < t0) δν (t > t0)

0.84 ≤ 10.2 . . . −2.7 ± 0.8
1.4 9.0+0.4

−0.6 −1.6 ± 0.2 −2.61± 0.09
2.4 ≤ 9.0 . . . −2.74± 0.07
4.8 8.8+0.2

−0.4 −1.5 ± 0.1 −2.84± 0.08
6.1 ≤ 11.3 . . . −2.6 ± 0.2
8.5 8.8+0.2

−0.4 −2.2 ± 0.2 −2.54± 0.04
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2005 Jan 06.8
VLA 8.6 GHz

Figure 1.
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Figure 3.
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SUPPLEMENTARY METHODS

Table 1. Flux density of VLA J180839–202439, the transient radio source coincident with SGR 1806–20, as a function of

both time and frequency, as measured by the VLA, ATCA, WSRT and MOST. The epoch of the flare was 2004 Dec 27.89 UT.

Uncertainties in each flux measurement are given at the 1-σ level. All telescopes carried out interferometric synthesis imaging

of the field of SGR 1806–20 to make these measurements. The absolute flux scales were set using bright standard calibrators;

on several days, different telescopes observed the source near simultaneously and obtained near identical flux measurements,

indicating the reliability of this calibration. Phase calibration was carried using regular observations of nearby bright compact

sources. At times when VLA J180839–202439 was bright enough, self-calibration in phase only was also applied. The data were

then Fourier transformed to the image plane, deconvolved using the point response derived from the synthesis transfer function,

and then convolved with a Gaussian beam corresponding to the diffraction limited resolution. Fluxes were then extracted in

three ways: by integrating the surface brightness of the source, by fitting the image of the source to a Gaussian, and by modelling

the source as a Gaussian in the complex visibility plane — results for total fluxes were consistent among these three approaches.

The data with lower spatial resolution (most notably the MOST and WSRT observations) suffered from confusion from the

bright radio source VLA J180840–202441 [Vasisht, Frail & Kulkarni, 1995, The Astrophysical Journal (Letters), 440, L65; Frail,

Vasisht & Kulkarni, 1997, The Astrophysical Journal (Letters), 480, L129], 14′′ to the east of SGR 1806–20, associated with

the Luminous Blue Variable (LBV) 1806–20 [Hurley et al., 1999, The Astrophysical Journal (Letters), 523, L37]. For these

data, difference imaging and background subtraction were carefully applied to extract the radio flux of the transient source.

The estimated uncertainties account for the systematic effects associated with this approach.

Mean Epoch Days after Telescope Flux Density (mJy)
(UT) Flare 0.84 1.4 2.4 4.8 6.1 8.5

GHz GHz GHz GHz GHz GHz
Jan 03.83 6.93 VLA . . . 172±4 . . . 80±1 . . . 53±1
Jan 04.52 7.62 WSRT . . . 152±22 . . . . . . . . . . . .
Jan 04.61 7.71 VLA . . . 146±7 . . . 66±3 . . . 41±2
Jan 05.26 8.36 ATCA . . . 120±7 93±2 60±1 . . . 36±2
Jan 05.66 8.76 VLA . . . . . . . . . 57±3 . . . 31±2
Jan 05.85 8.95 ATCA . . . 117±5 88±2 53±1 . . . 29±1
Jan 06.15 9.25 MOST 140±30 . . . . . . . . . . . . . . .
Jan 06.24 9.34 ATCA . . . 103±2 71±2 46±2 . . . 26±1
Jan 06.85 9.95 ATCA . . . 91±2 66±1 39±2 30±2 . . .
Jan 06.85 9.95 VLA . . . 90±2 . . . 39±1 . . . 24±1
Jan 07.06 10.16 MOST 120±15 . . . . . . . . . . . . . . .
Jan 07.20 10.30 ATCA . . . 87±3 54±1 . . . . . . . . .
Jan 07.44 10.54 WSRT . . . 83±6 . . . . . . . . . . . .
Jan 07.90 11.00 VLA . . . 75±4 . . . 28±2 . . . 17±1
Jan 08.06 11.16 MOST 90±15 . . . . . . . . . . . . . . .
Jan 08.19 11.29 ATCA . . . 64±5 40±2 25±2 21±1 . . .
Jan 09.06 12.16 MOST 75±15 . . . . . . . . . . . . . . .
Jan 09.07 12.17 ATCA . . . 53±4 36±2 21±1 . . . 12±2
Jan 10.07 13.17 ATCA . . . 39±2 29±1 17±1 . . . 9±2
Jan 10.49 13.59 WSRT . . . 36±8 . . . . . . . . . . . .
Jan 10.60 13.70 VLA . . . . . . . . . . . . . . . 9.0±0.5
Jan 12.05 15.15 MOST 35±15 . . . . . . . . . . . . . . .
Jan 12.06 15.16 ATCA . . . 28±2 20±1 12±1 10±1 8±1
Jan 13.74 16.84 VLA . . . . . . . . . . . . . . . 5.8±0.2
Jan 14.08 17.18 ATCA . . . 25±3 19±2 10±1 8±1 6±1
Jan 16.08 19.18 ATCA . . . 17±4 . . . 7±1 5±2 4±1
Jan 16.62 19.72 VLA . . . . . . . . . . . . . . . 4.0±0.1


