

Clicker Question:

Power is transmitted at very high voltages so that the corresponding current is:

A: also high to deliver appreciable power to distant places B: low so that overheating of the wires and other energy losses are minimized

C: identically zero

D: None of the above

Clicker Question:

A standing wave occurs when:

A: two waves overlap

B: the amplitude of a wave exceeds its wavelength

C: a wave is reflected onto itself

D: the speed of the wave is zero or near zero

Clicker Question:

Given that Jupiter orbits at about 5 times further from the Sun than the Earth, how does the intensity of the sunlight compare at Jupiter compared to the intensity at the Earth (where it is 1250 watts/square meter)?:

A: 2500 watts/square meter

B: 250 watts/square meter

C: 125 watts/square meter

D: 50 watts/square meter

Quantum Mechanics

Physics on the scale of individual atoms and photons

A Brief Introduction to Quantum Physics

At the microscopic level, allowed energies are discrete or quantized

Not all energies are possible Fair Analogy

Photon – discrete packet of energy

Smallest unit of energy that can exist as EM radiation at a certain frequency: E=hf

Planck's constant: $h = 6.6 \times 10^{-34} \text{ J} \cdot \text{s}$ Sets a lower limit on the energy transferred in any interaction

Atoms have equal positive and negative charge. Each element has its own allowed energy levels and thus its own spectrum.

Wave-Particle Duality

- Light behaves sometimes like a wave and sometimes like a particle
 - What are some properties of waves?
 - What are some properties of particles?

Wave-Particle Duality

Light behaves sometimes like a wave and sometimes like a particle

Wave properties

- Refraction, Interference, Diffraction
- Particle properties
- Spacetime location (occupies a definite position at a definite time)
 Inertia
- Waves spread out in space and time
- No identifiable "position"
- Particles have definite locations and travel through space inertially

Wave-Particle Duality (cont.)

- Ex. Image produced by a camera
 - Light waves spread out, refract as they pass through the lens, and are focused on the film
 - Photons strike photographic emulsion exposing the film grain by grain

Clicker Question:

The energy of a photon is proportional to its:

- A: frequency
- B: wavelength
- C: period
- D: speed

Clicker Question:

Which of the following a property of waves:

- A: clearly identifiable position
- B: travel in straight lines
- C: carry energy
- D: interference

Photoelectric Effect

- Light can knock electrons off of metals
 - Demonstrates particle-like nature of light
 - Electrons ejected as soon as light is turned on
 - Occurs for blue light, but not for red
 - Rate depends on brightness Electron energy depends on frequency

DEMO

Einstein – Light is also quantized, with energy proportional to frequency.

Photon absorption is "allor-nothing".

The Double-Slit Experiment

- Two stones dropped in pond => wave interference (Top)
- Similar to when light is shone through a double-slit (Bottom)
 - Bands caused by interference
- What if instead bullets were fired at the double-slit?

(Shockwave_Demo) (Web Link)

The Double-Slit and Photons

- If bullets are fired, solid curves in (a) describe holes in wall
- Dashed line => both slits open

If one photon at a time shown through only one slit => build up one of the solid curves in (a), but

- If both slits are open, over time light yields curve (b)!
- Each photon seems to pass through both slits at once and interfere with itself!

(Shockwave Demo) (Web Link

Massive Particles

- What if you fired a beam of massive particles like electrons at a double-slit.
 - Would you still observe an interference pattern?

DEMO

Massive Particles

Louis de Broglie - massive particles have an associated wavelength:

- Ordinary objects: wavelengths are negligible
- The wave nature of material objects has been verified for many subatomic particles

Electrons entering the apparatus one at a time exhibit both wave and particle properties, just like their massless counterparts the photons.

The Uncertainty Principle

Quantum processes

- Random "acts of creation"
 - Measurement disturbs the system in an unpredictable way!
 - Negligible effect for baseball, but important for subatomic particles
 - $\Delta p \Delta x \ge h/2\pi$
 - Δp uncertainty in momentum
 - Δx uncertainty in position Holds for all interactions
 - The more we know about one, the less we can know about the other

A device to measure the position of an object will change the object's momentum.

Measurement

- Measuring (or obtaining information about) any object requires some type of interaction with the object.
 - What does this imply about measurements made on subatomic particles like electrons?
 - How is the situation different when the object being studied is large, e.g. a baseball?

Demo: Schrodinger's Cat

- Ingredients: Black Box, Cat, Radioactive Isotope, Hammer, Poison Vial, Geiger Counter
- Recipe:
 - Place all ingredients in black box.
 - Ensure that hammer will shatter vial only if Geiger counter detects a particle.
 - Close lid and wait for time = half-life
- End Product cat that is simultaneously dead and alive (until you look!)
 - Demonstrates difficulty in identifying dividing line between classical and quantum realms!

Hawking radiation continued:

 $\label{eq:entropy} Effective Temperature \sim 1/mass \ \ so big black holes last for a very long time >> current age of the Universe$

After 10²¹ y a solar mass black hole will evaporate away

Final stage of black hole radiation is explosive with $10^6\,\mathrm{kg}$ of mass converted into energy

After 10¹⁰⁰ y, even the most massive black holes are gone.

Clicker Question:

A hypothetical atom has 4 energy states. Assuming all transitions are possible, how many spectral lines can this atom produce?

A: 2

- B: 4
- C: 6
- D: 8

Clicker Question:

Heisenberg's uncertainty principle states that if we know an object's position exactly then we can't know its:

- A: location
- B: velocity
- C: trajectory
- D: destiny