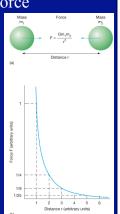
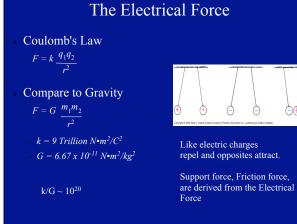
### The Four Fundamental Forces

What are the four fundamental forces?

### The Four Fundamental Forces


#### What are the four fundamental forces?


- Gravitational, Electromagnetic, Strong and Weak Nuclear

- Gravity: Increases with masses, Inverse square law force, Always attractive
- Weak: Involved in radioactive decay
- Electromagnetic: Increases with charges, Inverse square law force, Opposites attract and likes repel
- Strong: Holds positively charged nucleus together, Extremely short range (10<sup>-15</sup>m)
- Strong force 100 times EM and Weak forces, 10<sup>39</sup> times gravity
- Holy grail of physics is to unify these four forces!

# Gravitational Force

- The gravitational force is always attractive
- The strength of the attraction decreases rapidly (as the square of) increasing distance





| The Photon (γ) |                     |              |  |
|----------------|---------------------|--------------|--|
|                | Property            | Value        |  |
|                | Mass                | 0            |  |
|                | Charge              | 0            |  |
| <b>The</b>     | photon is the "medi | ator" of the |  |

**The photon is the "mediator" of** <u>electromagnetic interaction</u>

□ The photon <u>can only interact</u> with objects which have <u>electric charge</u>

## Unification

- There's a natural tendency toward unification of forces
- For instance electrical and magnetic phenomena where unified by Maxwell's equations into <u>electromagnetism</u>.
- In essence all electrical and magnetic phenomena can be described by the motion of charged particles.



## The Situation ~1900

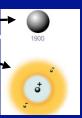
So at the turn of the last century most phenomena could be explained by

plained by gravity electromagnetism.



But some annoying things started cropping up because of improved instrumentation:

- X rays (Roentgen 1895)
- Radioactivity (Becquerel 1896)
- The electron (Thomson 1897)
- The nucleus (1911 Rutherford)


### The Quanta

All these discoveries led to the description of matter and radiation as particles or small quanta

- The quantum idea (Planck 1900)
- Light as quanta (Einstein 1905)
- The nucleus (Rutherford 1911)
- The atom (Bohr 1913)

### The Atom

- Let's consider the atom: In 1900 it was thought to be a solid sphere
- After the quantum revolution it was understoor to be composed of a nucleus and electrons.
- The electron has negative charge and the nucleus positive charge. The entire thing is held together by electromagnetism

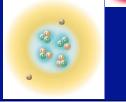


## Light as a Manifestation of a Fundamental Force

- By emitting or absorbing a photon, the electron can change its average position or energy in an atom.
- In every day life, the illumination from your light bulb is just a very great number of photons emitted from the excited filament atoms.
- This is a <u>classic electromagnetic interaction</u> and our first <u>manifestation of a fundamental force</u>!

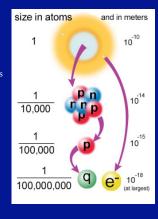
## A Characteristic of Fundamental Forces

- As the light bulb hinted, charged objects interact by exchanging photons.
- In the atom the electron and nucleus are held together by exchanging photons.
- In fact all fundamental forces involve the exchange of a fundamental particle.
- ... to go any further in our discussion we need to enumerate the fundamental particles


# The Nucleus and the Atom

- Nowadays we know the nucleus to be made of protons and neutrons
- And the protons and neutrons of quarks!
- So that a complete picture of the atom would include quarks and electrons.

Three quarks for Muster Markl Sure he has not got much of a bark And sure any he has it's all beside the mark. – James Joyce, *Finnegans Wake* 


Prediced in 1964 Discovered in 1968





### Scale

- Let's just take a small detour to consider the scale of the atom
- In fact the tiny electrons and quarks have no observed structure and are for all intents and purposes fundamental.



### The Standard Model

- The crowning achievement of particle physics is a model that describes all particles and particle interactions. The model includes:
- 6 quarks (those little fellows in the nucleus) and their antiparticles.
- 6 leptons (of which the electron is an example) and their antiparticles
- 4 force carrier particles (of which the photon is an example)
- All known matter is composed of composites of quarks and leptons which interact by exchanging force carriers.

### The Quarks

#### There are three pairs of quarks.

The up and down are the constituents of protons = uud and neutrons = udd, and make up most matter.

The other particles are produced in energetic subatomic collisions from cosmic rays or in accelerators like Fermilab (where they are also studied.)



## Clicker Question:

Which two forces have fields that fall off as 1/distance<sup>2</sup>?

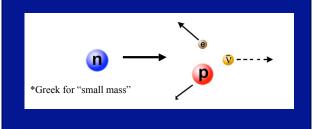
- A: strong and gravitational
- B: weak and gravitational
- C: strong and electromagnetic
- D: electromagnetic and gravitational

## Clicker Question:

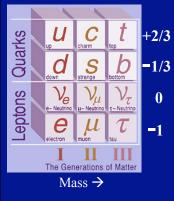
Which of these is a fundamental particle that is never found by itself?

A: neutron

- B: proton
- C: quark
- D: photon


## Clicker Question:

Electrons and protons influence each other by exchanging what type of particles?


- A: neutrinos
- B: bosons
- C: quarks
- D: photons

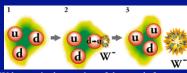
### Leptons\*

- Leptons are generally lighter particles and are most readily observed in radioactive decays.
- The best example is neutron decay into a proton, an <u>electron</u>, and a <u>neutrino</u>:



### Periodic Table of Fundamental Particles




#### Add Antiparticles

- Families reflect increasing mass and a theoretical organization
- u, d, e are "normal matter".
- Because of the charge quarks, electrons, muons, and tau's participate in EM

### The Weak Force

Radioactivity, in particular the neutron decay we discussed earlier, is actually a manifestation of the weak force

At the quark level, a down quark in the neutron decays into an up quark, by emitting a W boson.



The heavy W boson is the carrier of the weak force.

## A Brief, First, Consolidation

- We've enumerated two fundamental forces.
- Electromagnetism which occurs between charged particles and is carried by the photon,  $\gamma$ .
- Weak force which occurs between quarks and leptons and is mediated by the intermediate vector bosons, W<sup>+</sup>, W<sup>-</sup>, and Z<sup>0</sup>.



### The Problem of the Nucleus

Why doesn't the nucleus - full of positive protons that repel one another and neutral neutrons - blow itself apart?



- Gravity doesn't work since it's much too weak compared to electromagnetism.
- There must be yet another force around!

### The Color Charge

- Well it turns out quarks have another quantum number or charge called "color charge".
- The force between these color charges is extremely strong.
- <u>Two quarks interact by exchanging the strong carrier dubbed the</u> <u>"gluon"</u>
- Gluons themselves have color charges



## The Color Charge (continued)

- There are three color charges named: "red", "green" and "blue".
- These names are mathematical identifiers and have nothing to do with visible colors.
- Quarks are bound in a particle, like the proton, by madly exchanging gluons and forming a binding color field:

Comparison

Strong and EM Forces

EM

Photon (γ)

0

None

+, -

All objects with

electrical charge

Infinite (1/d<sup>2</sup>)

**Property** 

**Force Carrier** 

Mass

**Charge**?

**Charge types** 

**Mediates interaction** 

between:

Range



Strong

Gluon (g)

0

Yes, color charge

red, green, blue

All objects with

color charge

≲10<sup>-14</sup> [m]

(inside hadrons)

### The Color Charge (continued)

- Now back to the nucleus!
- The residual strong field between the protons and neutrons overwhelms the repulsive electromagnetic force and holds the whole thing together



### A Second Consolidation

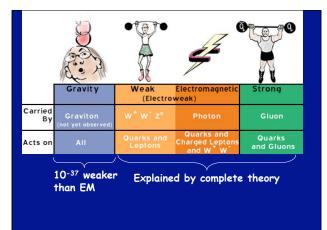
The weak force occurs between quarks and leptons and is mediated by the massive intermediate vector bosons W<sup>+</sup>,W<sup>-</sup>, and Z<sup>0</sup>



 The electromagnetic force occurs between electrically charged particles and is mediated by the massless photon.



The strong force occurs between color charged particles and is mediated by the massless gluon.




## Gravity

Should there be a carrier particle for gravity?

The graviton has not been discovered.

Still since this is a very weak force the Standard Model works very well in the absence of a full description



### A Few of the Unsolved Questions

- Can the forces be fully unified?
- How do particles get mass?
- How does gravity fit into all of this?
- Can we explain how gravity works on small scales quantum gravity?

## Clicker Question:

What force keeps the nucleus of an atom from coming apart? A: gravitational B: electromagnetic C: strong D: weak

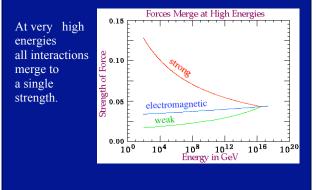
# Clicker Question:

What force holds electrons to the nucleus of atoms? A: gravitational B: electromagnetic C: strong D: weak

## Clicker Question:

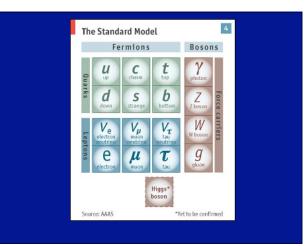
What force allows neutrons to decay into protons? A: gravitational B: electromagnetic C: strong D: weak

### The Electroweak Unification


Remember that quarks and leptons interact through the weak force?

Note the quarks, leptons, and bosons all carry charge so they can also interact electromagnetically. This is a big clue!

It turns formally (or mathematically) that electromagnetism and the weak force are manifestations of the same underlying force: the electroweak force.




## Grand Unified Theories(GUTs)



# The Higgs Particle

- The electroweak unification postulates the existence of the Higgs Particle, H.
- This particle or field interacts with all other particles to impart mass.
- The experimental program at Fermilab in Illinois and the Large Hadron Collider in Europe are dedicated to the search for this particle.
- It's discovery would be an achievement of the highest order reaching an understanding of the origins of mass!





# In Conclusion



- The four fundamental forces: gravity, weak, electromagnetism, and strong
- All but gravity explained by the Standard Model of particle physics
- Theory and experiment give tantalizing hints of full unification!



