Newton's Correction to Kepler's First Law

The orbit of a planet around the Sun has the common <u>center of mass</u> (instead of the Sun) at one focus.

Clicker Question:

A flaw in Copernicus's model for the solar system was:

- A: It didn't explain retrograde motion.
- B: He used circular orbits.
- C: The Earth was still at the center.
- D: He used the same mass for all the planets.
- E: All of the above

Clicker Question:

How long does it take the space shuttle to orbit the Earth once?

- A: 10 minutes
- B: 90 minutes
- C: 1 day
- D: 1 week

Clicker Question:

Suppose Matt weighs 120 lbs on his bathroom scale on Earth, how much will his scale read if he standing on a platform 6400 km high (1 Earth radius above sea-level)?

A: 12 lbs B: 30 lbs C: 60 lbs D: 120 lbs

E: 240 lbs

Phases of Matter and Fluid Mechanics

What are the different phases of matter and some of the properties of each?

Phases of Matter

- What are the different phases of matter and some of the properties of each?
 - Solid: Fixed shape
 - Liquid: Takes shape of container, incompressible
 - Gas: Takes shape of container, easily compressible
 Gas and liquids both flow => both are "fluids"
 - Plasma: A gas that is electrified or "ionized"

Density

- The density of an object is its mass divided by its volume
 - How is density related to atomic structure?

Density

- The density of an object is its mass divided by its volume
- How is density related to atomic structure?
- The more closely packed the atoms, the greater the density of an object.
- What can we say about the atoms in a solid to account for its fixed shape?

Density

- The density of an object is its mass divided by its volume
 - How is density related to atomic structure?
 - The more closely packed the atoms, the greater the density of an object.
 - What can we say about the atoms in a solid to account for its fixed shape?
 - Interatomic forces hold the molecules of a solid in fixed locations

The density of an object is a measure of its compactness.

Tension and Compression

- Tension stretching Atoms pulled apart
- Compression squeezing
 Atoms pushed together
- Which part of the beam is
 - under tension?
 - under compression?under no stress <u>at all?</u>
- So, what is the benefit of an I-beam vs. a solid beam?

Examples of Scaling

Why does an elephant have such big ears?

Scaling

- An ant can lift several times its own body weight
 - Why can't an elephant do the same thing?
 - Objects grow heavier at a faster rate than they grow stronger
 - Strength related to 2-d crosssectional area
 Weight is related to volume
 - What happens to the area to volume ratio of an object as its size incr<u>eases?</u>

Examples of Scaling

- Why does an elephant have such big ears?
 - Heat radiation governed by surface area
 - Same idea as radiator in your car
- Why don't we see arbitrarily large single-celled organisms?

Examples of Scaling

- Why does an elephant have such big ears?
 - Heat radiation governed by surface areaSame idea as radiator in your car
- Why don't we see arbitrarily large single-celled organisms?
 - Nourishment taken in through cell membrane
- Why can a lady bug fall out of a tree unharmed, but a person cannot?

Examples of Scaling

- Why does an elephant have such big ears?
 - Heat radiation governed by surface area
 - Same idea as radiator in your car
- Why don't we see arbitrarily large single-celled organisms?
 - Nourishment taken in through cell membrane
- Why can a lady bug fall out of a tree unharmed, but a person cannot?
 - Air resistance more effective for larger surface area to volume ratio (crushed vs. uncrushed feather)
 Bug acts as its own parachute!

Liquids

- Molecules are not confined to fixed positions
 - Can flow by sliding over one another
- Very difficult to compress
 - What does this imply about the spacing between molecules in a liquid?
 - How do you think this compares to the spacing between molecules in a gas?

Pressure

Pressure is a force divided by the area over which the force is exerted

Pressure = Force Area

- Which block feels the greatest gravitational force?
- Which block exerts the greatest pressure on the table?

Pressure in a Liquid Pressure in a liquid increases with depth - Felt in your ears at the

 Felt in your ears at the bottom of a swimming pool

Pressure = Weight density * depth

- Weight density = weight per unit volume
- Which body of water exerts the greatest pressure on the dam?
- Which fish feels the greatest pressure?

Pressure in a Liquid

- Pressure in a liquid increases with depth
 - Felt in your ears at the bottom of a swimming pool
- Pressure = Weight density * depth
 - Weight density = weight per unit volume
- Which body of water exerts the greatest pressure on the dam?
- Which fish feels the greatest pressure?
 - <u>Pressure only depends on</u> <u>depth</u>

DEMO : Pascal Tubes, Water Traj.

Atmospheric Pressure

- We are at the bottom of the atmosphere
- At sea level 1 m³ of air weighs 1.2 kg
- Pressure is 101 kPa (aka 1 atmosphere or 14.7 psi)
- <u>kPa = kiloPascals</u>
- <u>psi = pounds per square inch</u>

DEMO : Crush the Can

Clicker Question:

Which material is most resistent (doesn't break apart) under tension?

- A: a concrete block
- B: a strand of spaghetti
- C: a steel bar
- D: a strong man

Clicker Question:

A car has tires at 40 psi measured warm at sea level. Suppose the car is driven up a mountain to 10,000 feet elevation. What will happen to the tire pressure?

- A: increase
- B: decrease
- C: stay the same
- D: can't say

Clicker Question:

To measure the density of an object we need to know what?

- A: mass and circumference
- B: volume and width
- C: mass and volume
- D: weight and height

Buoyancy

- The apparent loss of weight of a submerged object
- Objects under water are much easier to lift
- In what direction does the buoyant force point?
- What is the source of this force?

Buoyancy

- The apparent loss of weight of a submerged object
 - Objects under water are much easier to lift
- In what direction does the buoyant force point?
 - Up (in direction of least pressure)
- What is the source of this force?
 - The pressure *difference acting on the top and bottom of the object*

Archimedes' Principle

- An immersed object is buoyed up by a force equal to the weight of the fluid it displaces
 - What property of an object determines how much fluid a completely submerged object will displace?

Archimedes' Principle

- An immersed object is buoyed up by a force equal to the weight of the fluid it displaces
 - What property of an object determines how much fluid a completely submerged object will displace?
 - The volume of the object Regardless of shape, mass
 For partially submerged object, it is the volume of the submerged part
 Boat

DEMO : Archimedes Principle

Archimedes' Principle (Cont.)

Does Archimedes' principle depend on depth?

Archimedes' Principle (Cont.)

- Does Archimedes' principle depend on depth?
 - No. Volume of fluid displaced by submerged object is the same at any depth.
 - Buoyant force only depends on pressure differences
 - Same at any depth

Sink or Float

- An object more (less) dense than the fluid in which it is immersed will sink (float).
- What must you do to increase your buoyancy in water?

Sink or Float

- An object more (less) dense than the fluid in which it is immersed will sink (float).
 - What must you do to increase your buoyancy in water?
 Decrease your density
- Life jacket increases volume while adding very little weight An object with a density
- equal to the surrounding fluid will neither sink nor float.
- Fish (air sac) and submarines (ballast) can vary their densities

Crocodiles increase their density by swallowing stones.

DEMO : Cartesian Diver

The Principle of Flotation

- How is it that an iron ship will float in water?
- How much water must be displaced for an object to float?

The Principle of Flotation

- How is it that an iron ship will float in water?
- How much water must be displaced for an object to float?

- Principle of flotation
 - A floating object displaces a volume of fluid with a weight equal to its own weight.

Pascal's Principle

- A change in pressure at any point in an enclosed fluid at rest is transmitted undiminished to all points in the fluid.
 - Direct consequence of incompressibility
- How can we use this fact to lift a very heavy load by applying a force that is only a small fraction of the weight of the object?

The Hydraulic Press

- Force = Pressure * Area
 - Area at right is 50 times area at left, and so is the force!
- Pascal's Principle enables us to multiply forces
- Why doesn't this violate conservation of Energy?

The Hydraulic Press

Force = Pressure * Area

- Area at right is 50 times area at left, and so is the force!
- Pascal's Principle enables us to multiply forces
- Why doesn't this violate conservation of Energy?
 - Load is raised only 1/50th of the distance that the light load descends!

• Work = Force * Distance

