Review for Test #2 Oct 20

Topics:

- Gravity under, on, above the Earth, orbits, escape velocity Phases of matter and fluid mechanics, buoyancy Temperature, Heat and Thermodynamics 3 laws

- Heat transfer and phase changes The Earth and global warming Special Relativity

Methods

- Conceptual Review and Practice Problems Chapters 6 9
- · Review lectures (on-line) and know answers to clicker questions
- and homeworks.
- Go over practice test. Attend SI sessions.
- Bring:
- Banner ID and Two Number 2 pencils
- Simple calculator (no electronic notes)
- Reminder: There are NO make-up tests for this class

Test #2 Review

How to take a multiple choice test

- 1) Before the Test
- Study hard (~2 hours/day Now through Sunday) Get plenty of rest the night before
- 2) During the Test:
- Draw simple sketches to help visualize problems
- Solve numerical problems in the margin
- Come up with your answer first, then look for it in the choices
- If you can't find the answer, try process of elimination If you don't know the answer, Go on to the next problem and
- •
- come back to this one later TAKE YOUR TIME, don't hurry
- If you don't understand something, ask me. This is not meant to be a vocabulary test.

1/9 1/25

4

Gravity and Orbits

 Gravity decreases as you climb out of the "potential well"

How much has the girl's weight dropped after she climbs a distance equal to the distance from the surface to the center of the Earth?

Escape Velocity

- Speed at which an object can permanently escape from a body determined by strength of the gravitational force
- Earth: 11 km/s
- Moon: 2.4 km/s
- Sun: 42.5 km/s
- Explains why moon has no atmosphere!

Scaling

- An ant can lift several times its own body weight
- Why can't an elephant do the same thing?
- Objects grow heavier at a faster rate than they grow stronger
- Strength related to 2-d cross sectional area
 Weight is related to volume
- What happens to the area
- to volume ratio of an
- object as its size increases?

Archimedes' Principle

- An immersed object is buoyed up by a force equal to the weight of the fluid it displaces
 - What property of an object determines how much fluid a completely submerged object will displace?
 - The volume of the object
 Regardless of shape, mass
 For partially submerged
 object, it is the volume of
 the submerged part
 - Boat

DEMO : Archimedes Principle

Temperature and Heat

- What is temperature?
 - A measure of how warm or cold an object is with respect to some standard
 - Related to the random thermal motion of the molecules in a substance; $kT = KE = 1/2 \text{ mv}^2$
- What is heat?
 - The energy transferred <u>between</u> objects due to a temperature difference
 - Energy in transit (similar to work)

Thermal Expansion

- Why do objects tend to expand when heated and contract when cooled?
- As temperature increases, molecules jiggle faster and move farther apart
- Important engineering consideration
 - Ex. Expansion joints in bridges
 - Golden gate bridge contracts more than a meter in cold weather

The unequal expansion of a bimetallic strip can operate a thermostat.

Three Laws of Thermodynamics

 -1^{st} law

- Energy can neither be created nor destroyed.
- 2nd law
- The entropy of an isolated system always increases.
- 3rd law
- Nothing can be cooled to absolute 0 K.

What would be the entropy of a crystal at 0 K?

Clicker Question:

Which of the following must always increase for any physical process (like a chemical reaction)?

- A: energy
- B: temperature
- C: entropy D: heat

Clicker Question:

Suppose you buy some ice-cream at the store, and you don't want it to melt on the long bike-ride home. What can you do?

A: Leave it exposed to the air so the breeze keeps it cool.

B: Wrap it up in your down jacket.

C: Shield it from the sun, but don't otherwise cover it up.

D: Nothing, how fast it melts only depends on distance.

Clicker Question:

Hydrogen and oxygen molecules in a gas sample have the same temperature. This means the hydrogen molecules, on the average, have the same ...

A: kinetic energy, but more speed.

B: speed, but less kinetic energy.

C: speed, but more kinetic energy.

D: kinetic energy and the same speed.

Phases of Matter

What are the different phases of matter and some of the properties of each?

- Solid: Fixed shape
- Liquid: Takes shape of container, incompressible
- Gas: Takes shape of container, easily compressible
 Gas and liquids both flow => both are "fluids"
- Plasma: A gas that is electrified or "ionized"

Changes of Phase

List the four phases of matter in order of increasing internal energy

solid => liquid => gas => plasma

List the processes that take you from a solid to a plasma

melting => evaporation => ionization

List the processes that take you from a plasma to a solid

electron capture => condensation => freezing

Temperature and Phase Changes

- Temperature is constant during a change of phase
 - Absorbed heat goes into breaking molecular bonds => increased potential energy. Translational K.E. remains unchanged. (Left to Right)
 - Extracted heat allows molecular bonds to form (decreased potential energy) at fixed temp. (Right to Left)

5 100°	Vaporizing	Sream
Melting 30000	540 cal	
-50° (335 J) (418 J)	(2255 J)	
Heat		
Copyright © 2008 Paul G. Hewitt, printed countery of Peerson Education Inc., publishing as Addison Wesley		

A material absorbs energy when melting or vaporizing and expels energy when condensing or freezing.

During a phase change, the energy goes into the change of state rather than into changing the object's temperature.

The Temperature of the Earth

Neglecting other effects, at equilibrium the Earth would reradiate all of the energy received from the Sun and have an average temperature of -23° С.

Why is the average temperature of Earth so much (about 40° C) higher?

Main greenhouse gases are H_2O and CO_2 . If no greenhouse

Postulates of Special Relativity

1st Postulate

- The laws of nature are the same in all uniformly moving frames of reference.
 - Uniform motion in a straight line at a constant speed
- Ex. Passenger on a perfectly smooth train

2nd Postulate

The speed of light is the same in all uniformly moving reference frames

Relativistic Summary

- time dilation : $t = t_0 / \gamma$
- length contraction: $L = L_0 / \gamma$

 $m = \gamma m_0$ where

- $0.14c \rightarrow \gamma = 1.01$
- 0.99c --> $\gamma = 7.14$
- $0.998c -> \gamma = 15$

Clicker Question:

For increased atmospheric pressure, the boiling temperature of a liquid:

- A: goes down.
- B: remains at 100 C.
- C: goes up.
- D: drops to absolute 0 K.

Clicker Question:

- According to the special theory of relativity, events that are simultaneous in one frame of reference
- A: may or may not be simultaneous in other frames of reference.
- B: are simultaneous in all frames of reference.
- C: are not simultaneous in any other frames of reference.
- D: are special events that should be celebrated with your relatives.

Clicker Question:

- The speed of electrons moving through electric cables must be: A: equal to the speed of light
- B: greater than the speed of light
- C: less than the speed of light
- D: zero

$\begin{array}{l} \hline \mbox{Test #2 Useful Equations} \\ \mbox{Newton's Law of Gravity:} \quad F = -\frac{G \ M \ m}{R^2} \\ \mbox{Escape Velocity:} \quad v_{esc} = \sqrt{-\frac{2 \ G \ M}{R}} \\ \mbox{Orbital Velocity:} \quad v_{orb} = \sqrt{-\frac{G \ M}{R}} \\ \mbox{Orbital Velocity:} \quad v_{orb} = \sqrt{-\frac{G \ M}{R}} \\ \mbox{Density = Mass/Volume} \\ \mbox{F}_b = m_w g = V d_w g \\ \mbox{Celsius <--> Fahrenheit conversion: } C = 5/9 \ (F - 32) \ ; \ or \ F = 9/5 \ C + 32 \\ \mbox{Q = c m } \Delta T \ ; \quad KE = 1/2 \ mv^2 \ ; \ KE = k \ T \end{array}$