MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. | 1) | A scientific statement that can never be changed | nat can never be changed is a scientific 1) | | | | | | |----|---|--|----|--|--|--|--| | | A) law. | | | | | | | | | B) theory. | | | | | | | | | C) principle. | | | | | | | | | D) hypothesis. | | | | | | | | | E) None of the above choices are correct. | | | | | | | | 2) | As an object freely falls downward, its | | 2) | | | | | | | A) acceleration increases. | B) velocity increases. | | | | | | | | C) both of these. | D) none of these. | | | | | | | 3) | The gain in speed each second for a freely-falling | he gain in speed each second for a freely-falling object is about 3) | | | | | | | | A) 0. | | | | | | | | | B) 20 m/s. | | | | | | | | | C) 5 m/s. | | | | | | | | | D) 10 m/s. | | | | | | | | | E) depends on the initial speed | | | | | | | | 4) | A package falls off a truck that is moving at 30 m/s. Neglecting air resistance, the horizontal speed 4) | | | | | | | | | A) more than 30 m/s. | | | | | | | | | B) less than 30 m/s but larger than zero. | | | | | | | | | C) 30 m/s. | · | | | | | | | | D) zero. | | | | | | | | | E) More informationis needed for an estimate. | | | | | | | | 5) | According to Newton's law of inertia, a rail road train in motion should continue going forever even if its engine is turned off. We never observe this because railroad trains | | | | | | | | | A) are much too heavy. | | | | | | | | | B) must go up and down hills. | | | | | | | | | C) move too slowly. | | | | | | | | | D) always have forces that oppose their motion. | | | | | | | | 6) | Whirl a rock at the end of a string and it follows a circular path. If the string breaks, the tendency of the rock is to | | 6) | | | | | | | A) increase its speed | B) follow a straight-line path. | | | | | | | | C) continue to follow a circular path. | D) revolve in a smaller circle | | | | | | | 7) | The last instant just before an airplane crashes a pleet to the ground. The passenger is | passenger jumps out the door and falls only two | 7) | | | | | | | A) lucky to have studied physics. | B) intelligent to think so fast. | | | | | | | | C) unharmed. | D) probably hurt or killed. | | | | | | | 8) | Which of the following is not a vector quantity? | | | | | | | |-----|---|---|----------------------|-------------------------|------------------|--|--| | | A) speed | | B) accelera | ntion | | | | | | C) velocity | | D) Ali are | vector quantities. | | | | | 9) | An airplane flies at 100 km/h in still air If it flies into a 10 km/h headwind, its groundspeed is | | | | | | | | | A) 90 km/h. | B) 110 km/h. | C) 120 km | /h. D) 100 k | m/h. | | | | 10) | The two measuremen | nts necessary for calculatin | g average speed | are | 10) | | | | | A) acceleration and time. | | | | | | | | | B) velocity and tim | e. | | | | | | | | C) distance and acc | eleration. | | | | | | | | D) velocity and distance. | | | | | | | | | E) distance and tim | æ. | | | | | | | 11) | A car maintains a cor | nstant velocity of 100 km/b | or for 10 seconds. | During this interval it | acceleration 11) | | | | | A) zero. | B) 110 km/hr. | C) 1000 kn | n/hr. D) 10 kr | n/hr. | | | | 12) | | in motion across a frozen ;
keep the puck sliding at co
ht. | | | neglected, 12) | | | | | B) equal to the product of its mass times its weight. | | | | | | | | | C) equal to its weight divided by its mass. | | | | | | | | | D) zero. | | | | | | | | 13) | If a car accelerates from rest at 2 meters per second per second, its speed 3 seconds later will be about | | | | | | | | | A) 3 m/s. | B) 4 m/s. | C) 2 m/s. | D) 6 m/ | s. | | | | 14) | If no external forces are acting on a moving object it will A) move slower and slower until it finally stops. B) continue moving at the same speed. | | | | | | | | | C) continue moving at the same velocity. | | | | | | | | 15) | Galileo's use of inclin | ed planes allowed him to | effectively | | 15) | | | | | A) slow down the acceleration of free fall. | | | | | | | | | B) increase the acceleration beyond that of free fall. | | | | | | | | | C) eliminate the acceleration of free fall. | | | | | | | | | D) eliminate friction | n. | | | | | | | 16) | While an object near | the earth's surface is in fre | e fa il , its | | 16) | | | | | A) velocity increase | | | ition increases. | · | | | | | C) mass increases. | | D) mass de | ecreases. | | | | | | wice that of the earth, its speed one second later would be | | | | | |------------------|--|--|--|------------------------------|-------------| | | A) 10 m/s. | B) 20 m/s. | C) 30 m/s. | D) 40 m/s. | | | 18) | | | pped with an odometer to
each succeeding second w | | 18) | | | A) constant. | | B) less and less ea | ch second. | | | | C) greater than the | second before. | D) doubled. | | | | 1 9) | While a car travels are | ound a circular track at a | constant speed its | | 19) | | | A) acceleration is ze | ro. | B) velocity is zero. | • | | | | C) inertia is zero. | | D) none of the abo | ve | | | 20) | Compared to a 1-kg l | block of solid from, a 2-kg | t block of solid iron has tw | ice as much | 20) | | | A) inertia. | | | | | | | B) mass. | | | | | | | C) volume. | | | | | | | D) all of these | | | | | | | E) none of these | | | | | | 21) | If one object has twice | as much mass as anothe | er object, it also has twice a | is much | 21) | | , | A) inertia. | n ann an a | | no arrace; | | | | B) velocity. | | | | | | | C) acceleration due | to gravity. | | | | | | D) volume. | 87- | | | | | | E) all of these | | | | | | 22) | Strange as it may seen here on the Earth. Thi | | elerate a car on a level sur | face on the moon as it is | 22) | | | A) the mass of the car is independent of gravity. | | | | | | | B) the weight of the car is independent of gravity. | | | | | | | C) Nonsense! A car | is much more easily acco | elerated on the moon than | on the Earth. | | | 23} | A rock weighs 30 N on Earth. A second rock weighs 30 N on the moon. Which of the two rocks has the greater mass? | | | 23) | | | | A) the one on Earth | | B) the one on the r | noon | | | | C) They have the sa | me mass. | D) not enough info | ormation to say | | | 24) | A 10-kg brick and a 1 | -kg book are dropped ir | a a vacuum. The force of g | ravity on the 10-kg brick is | 24) | | | A) the same as the f | orce on the 1-kg book. | B) 10 times as muc | zh. | | | | C) one-tenth as mu | | | | | | 25) | 5) An object is propelled along a straight-line path by a force. If the net force were doubled, the
object's acceleration would be | | | | | | |-----|---|------------------|------------------|------------------------------------|-----|---------------------------------------| | | A) haif as much. | | | | | | | | B) the same. | | | | | | | | C) twice as much. | | | | | | | | D) four times as much. | | | | | | | | E) none of these. | | | | | | | 26) | An apple at rest weighs 1 N. The net force on the apple when it is in free fall is | | | | | | | | A) 0 N. | | | | | | | | B) 0.1 N. | | | | | | | | C) 1 N. | | | | | | | | D) 9.8 N. | | | | | | | | E) none of these | | | | | | | 27) | A light woman and a heavy man ju
parachutes at the same time. Which | | | | 27) | · | | | A) the light woman | | B) the heavy | man | | | | | C) Both should arrive at the same | time | D) not enough | n information | | | | 28) | A coconut and a feather fall from a tree through the air to the ground below. The strength of the force of air-resistance is | | | | 28) | · · · · · · · · · · · · · · · · · · · | | | A) greater on the coconut. | B) greater on th | e feather. | C) the same on each. | | • | | 29) | A player catches a ball. Consider the action force to be the impact of the ball against the player's 29) glove. The reaction to this force is the | | | | | | | | A) player's grip on the glove. | | | | | | | | B) force the glove exerts on the ball. | | | | | | | | C) friction of the ground against the player's shoes. | | | | | | | | D) muscular effort in the player's arms. | | | | | | | | E) none of these | | | | | | | 30) | A baseball player bats a ball with a is | force of 1000 N. | The reaction for | ce that the ball exerts on the bat | 30) | | | | A) less than 1000 N. | | B) more than | 1000 N. | | | | | C) 1000 N. | | D) impossible | | | | | 31) | A skydiver falls towards the Earth. The attraction of the Earth on the diver pulls the diver down. What is the reaction to this force? | | | | 31) | | | | A) air resistance the diver encounters while falling | | | | | | | | B) water resistance that will soon act upward on the diver | | | | | | | | C) the attraction to the planets, stars, and every particle in the universe | | | | | | | | D) all of these | | | | | | | | E) none of these | | | | | | | 32) | A car traveling at 100 km/hr strikes an unfortunate bug and splatters it. The force of impact is | | | | | | | |-----|--|-----------------------|--------------------------|----------------------------------|--|--|--| | | A) greater on the bug. | B) greater | on the car. | C) the same for both. | | | | | 33) | A Mack truck and a Volkswagen traveling at the same speed have a head-on collision. The vehicle that undergoes the greatest change in velocity will be the | | | | | | | | | A) Volkswagen. | B) Mack t | ruck. | C) same for both. | | | | | 34) | A karate chop delivers a blow of 3000 N to a board that breaks. The force that acts on the hand during this event is | | | | | | | | | A) zero. | B) 1500 N. | C) 3000 N, | D) 6000 N. | | | | | 35) | An object maintains a con | stant acceleration un | less there is a change | in | 35) | | | | | A) its mass. | | B) the applied | force. | ###################################### | | | | | C) the air resistance. | | D) any of the | ibove | | | | | 36) | If an object of constant me | ass experiences a con | stant net force, it will | have a constant | 36) | | | | | A) velocity. | | | | | | | | | B) speed. | | | | | | | | | C) acceleration. | | | | | | | | | D) position. | | | | | | | | | E) more than one of the | above | | | | | | | 37) | 7) If more horizontal force is applied to a sliding object than is needed to maintain a constant velocity, | | | | | | | | | A) the object accelerates in the direction of the applied force. | | | | | | | | | B) the object accelerates opposite the direction of the applied force. | | | | | | | | | C) the friction force increases. | | | | | | | | | D) two of the above | | | | | | | | | E) none of the above | | | | | | | | 38) | The difference between in | npulse and impact fo | orce involves the | | 38) | | | | | A) distance the force acts. | | | | | | | | | B) time the force acts. | | | | | | | | | C) difference between acceleration and velocity. | | | | | | | | | D) mass and its effect on resisting a change in momentum. | | | | | | | | 39) | Suppose that a tiny gun n than the gun itself. For su | | very light material fire | es a bullet that is more massive | 39) | | | | | A) the target would be safer than the shooter. | | | | | | | | | B) recoil problems would be lessened. | | | | | | | | | C) conservation of energy would not hold. | | | | | | | | | D) conservation of mon | entum would not he | ŀd. | | | | | | | E) both conservation of | energy and moment | um would not hold. | | | | | | 4 U) | When you jump from an elevated position you usually bend your knees upon reaching the ground.
By doing this, you make the time of the impact about 10 times as great as for a stiff-legged landing.
In this way the average force your body experiences is | | | | | | | |-------------|--|--|--|--|--|--|--| | | A) less than 1/10 as great. | B) more than 1/10 as great. | | | | | | | | C) about 1/10 as great, | D) about 10 times as great. | | | | | | | 41) | A car traveling along the highway needs a certain amount of force exerted on it to stop it in a certain distance. More stopping force is required when the car has | | | | | | | | | A) more mass. | | | | | | | | | B) more momentum. | | | | | | | | | C) less stopping distance. | | | | | | | | | D) all of these | | | | | | | | | E) none of these | | | | | | | | 42) | The force on an apple hitting the ground depends upon | | | | | | | | | A) the speed of the apple just before it hits. | B) the time of impact with the ground. | | | | | | | | C) whether or not the apple bounces. | D) all of these | | | | | | | 43) | 3) A 1-kg chunk of putty moving at 1 m/s collides with and sticks to a 5-kg bowling ball initially at rest. The bowling ball and putty then move with a momentum of | | | | | | | | | A) 0 kg m/s. | | | | | | | | | B) 1 kg m/s. | | | | | | | | | C) 2 kg m/s. | | | | | | | | | D) 5 kg m/s. | | | | | | | | | E) more than 5 kg m/s. | | | | | | | | 44) | ou're driving down the highway and a bug spatters into your windshield. Which undergoes the preater change in momentum during the time of contact? | | | | | | | | | A) the bug B) your ca | cr C) both the same | | | | | | | 45) | An astronaut , floating alone in outer space, throws a baseball. If the ball floats away at a speed of 20 45) | | | | | | | | | A) move in the opposite direction at a speed of 20 m/s. | | | | | | | | | B) move in the opposite direction, but at a lower speed. | | | | | | | | | C) move in the opposite direction but at a higher speed. | | | | | | | | | D) not move as stated in any of the above che | pices. | | | | | |