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1 Introduction

The current version of the LWA station architecture [1] specifies that the beamforming units (BFUs)
should accept the raw (essentially linear) polarizations from each antenna stand and output cali-
brated orthogonal circular polarizations. Because we expect the polarization of each antenna to be
different due to mutual coupling, we wish to convert to calibrated circular polarizations prior to
combining. This document describes the relevant theory and a possible scheme for accomplishing
this conversion.

2 Theory

Consider a monochromatic plane wave incident on an antenna. The incident electric field is given
with complete generality by:

E(t) = âEa(t) + b̂Eb(t) , where (1)

Ea(t) = Ea0 cos (ωt + θ) , (2)

Eb(t) = Eb0 cos (ωt + θ + δ) , (3)

with â and b̂ being any two orthogonal unit vectors in the plane transverse to the direction of
propagation; and Ea0, Eb0, and δ being real-valued constants which parameterize the polarization of
the wave. We can express E in phasor notation as E using the relationship

E(t) = Re
{
Eejωt

}
, where (4)

E = âEa0 + b̂Eb0e
jδ , with (5)

Ea0 = Ea0e
jθ and (6)

Eb0 = Eb0e
jθ . (7)

In this formulation, circular polarization is defined as Ea0 = Eb0 and δ = ±π/2, where the
“+” and “−” signs correspond to left-hand circular polarization (LHCP) and right-hand circular
polarization (RHCP) respectively. Thus we have:

E = E0

(
â + jb̂

)
for LHCP and (8)

E = E0

(
â− jb̂

)
for RHCP, (9)

where E0 = Ea0 = Eb0. It can be verified that the above expressions for LHCP and RHCP are
orthogonal by computing the inner product between them and noting that the result is zero. Thus,
any incident wave – regardless of polarization – can be represented as the sum of one LHCP wave
and one RHCP wave. Let these waves be EL and ER, respectively. Then we have

EL = EL

(
â + jb̂

)
where EL = E · 1

2

(
â− jb̂

)
; and (10)

ER = ER

(
â− jb̂

)
where ER = E · 1

2

(
â + jb̂

)
. (11)

Finally, we note that

E = EL + ER = â(EL + ER) + b̂j(EL − ER) or simply (12)

E = âEa0 + b̂Eb0 , where (13)

Ea0 = EL + ER , and (14)
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Eb0 = j(EL − ER) . (15)

When this wave arrives at the antenna stand, it generates voltages across the antenna terminals
equal to

Vc = E · lc(r̂) and (16)

Vd = E · ld(r̂) , (17)

where Vc and Vd are the voltages associated with the two antennas respectively, and lc and ld are
the vector effective lengths (VELs) associated with these antennas. The parameter r̂ is the vector
pointing in the direction from which the wave arrives at the antenna stand. The VELs are charac-
teristics of the antennas (essentially, a unified compact representation of the gain and polarization
patterns) and can be determined from theoretical analysis, computer modeling, or direct measure-
ment. It should also be noted that this formulation is valid independently of the presence or absence
of mutual coupling. In the presence of mutual coupling, however, it is important that the values of
lc and ld used here are those determined in the presence of the same mutual coupling.

Substitution of equations (13) through (15) into equations (16) and (17) yields:

Vc = (â · lc)Ea0 + (b̂ · lc)Eb0 and (18)

Vd = (â · ld)Ea0 + (b̂ · ld)Eb0 , (19)

which are linear simultaneous equations which can be solved for Ea0 and Eb0 given Vc, Vd, and the
known (a priori) antenna characteristics:

[
Ea0

Eb0

]
=

[
(â · lc) (b̂ · lc)
(â · ld) (b̂ · ld)

]−1 [
Vc

Vd

]
(20)

Further, we note that equations (14) and (15) constitute linear simultaneous equations which can
be solved for EL and ER given Ea0 and Eb0 from the previous calculation. Thus we find:

[
EL

ER

]
=

[
1 1
j −j

]−1 [
(â · lc) (b̂ · lc)
(â · ld) (b̂ · ld)

]−1 [
Vc

Vd

]
(21)

Since the two 2× 2 matrices in the equation above can be precomputed and combined into a single
matrix, we find that a single 2 × 2 matrix multiply transforms the “raw” antenna voltages Vc and
Vd into the incident electric field coefficients EL and ER associated with the LHCP and RHCP
components, respectively, of the incident electric field.

3 Frequency-Dependent Antenna Polarization

One caveat applicable to the preceding derivation is that it is exact only at a single frequency. Thus,
this method becomes inaccurate if applied over large fractional bandwidth. In terms of equation (21),
the problem is that lc and ld become functions of frequency as well as direction (r̂).

A scheme for dealing with this is presented in Figure 1. In this figure, each block labeled “FIR”
represents a finite impulse response (FIR) filter. To understand this scheme, first consider the
monochromatic case. In this case, each one of the FIR blocks represents multiplication of the in-
put by one of the elements of the 2 × 2 matrix implied in equation (21). To extend bandwidth,
we compute these coefficients over the frequency range of interest, resulting in four complex-valued
functions with frequency as the independent variable. Associated impulse responses can be obtained
by application of the inverse Fourier transform, and the coefficients of the FIR filters are then simply
the sampled impulse responses.
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Figure 1: Scheme for polarization processing when antenna responses are frequency-dependent.
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It should be noted that in this scheme both the input and coefficients will all be complex-valued in
general, and thus all multiply/accumulate operations will be fully complex. This could potentially
become quite computationally demanding if the polarization characteristics of the antennas vary
rapidly with frequency, as this might then require large FIR filters for implementation.
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