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1 Introduction

This memo demonstrates the use of 74.03 MHz TBN data for array calibration and beamforming in
observations of the strong radio sources Cas A and Cyg A. Specifically:

• The calculation of phase-and-sum beamforming coefficients directly from TBN observations
of Cyg A is demonstrated. Said differently, it is possible to “phase up” the array on Cyg A
having only TBN output and no information about array geometry or instrumental phases.
(This is henceforth referred to as “blind” beamforming.)

• Using just one set of “known good” beamforming coefficients (namely, those obtained above)
plus the array geometry, the beam can be accurately pointed in other directions. In partic-
ular, it is demonstrated that it is possible to point a beam at Cas A using only the Cyg A
beamforming coefficients and the array geometry.

• The beam sensitivity – specifically, system equivalent flux density (SEFD) – is extracted from
observations of Cyg A, and is found to be 8.68 kJy for this pointing using 1 polarization.
Scaling this value to account for both polarizations and assuming all dipoles working, the
SEFD is 4.05 kJy. This is about 20% better than the value predicted for the same zenith angle
in LWA Memo 166.1

• The known ratio of the flux densities of Cas A to Cyg A was used to estimate the ratio of the
power patterns of the dipoles in the directions of these two sources. The results were distributed
over a 3.8 dB range (1σ). However, the mean value is within ∼ 20% of the ratio predicted
using the “standalone stand” model of LWA Memo 175, and the variation is consistent with
the mutual coupling-induced variations predicted in LWA Memo 166.

A few concerns that merit future attention are also noted. These include:

• The peak sidelobe levels of the phase-and-sum beam appear to be about −10 dB – much higher
than expected from previous studies. It is possible that this is due to mutual coupling.

• A large irregular oscillation on time scales of 10–100 s is seen in the beamformer output. The
same oscillation appears to be present in the individual baselines (although it is hard to be sure
about this). Possible causes include ionospheric scintillation and locally-generated multipath.

• The “DC” term in the dipole-to-outrigger fringes seems much larger than the sum of the
expected contributions (namely, the “DC” term of the sky brightness correlation, and crosstalk
within the instrument).

2 Description of the Data

All work described in this memo is from the single dataset 055792 001156533, which is 60 minutes
of 100 kSPS TBN data starting at 22:12 MDT August 18, 2011. The instantaneous bandwidth of
this data is approximately B = 67 kHz. At the mid-point of this observation (22:42 MDT), the
positions of Cyg A and Cas A were as indicated in Table 1.

LWA-1 appears to have been in good working order during the data collection, although 21 of
260 stands were excluded from analysis either because they are not installed (e.g., stands 257, 259,
and 260), exhibited low signal level, or exhibited some other anamoly (e.g. failed to produce the
expected fringes). Thus, a total of 239 stands are used in the analyses described in this memo.
Only the North-South-aligned polarizations of these stands are used, so a total of 239 dipoles are
considered.

1It should be noted that SEFD depends on both pointing relative to the zenith (due to beam gain) as well as
pointing with respect to RA/Dec (due to externally-dominated system temperature).
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Source RA (h:m:s) Dec (d:m:s) Az (d:m:s) Z (d:m:s) Flux density

Cyg A 19:59:28.35 +40:44:02.1 46:07:35 10:11:14 17.06 kJy
Cas A 23:23:26.00 +58:48:00.0 38:29:11 46:26:32 17.13 kJy

Table 1: Astronomical source data relevant to this dataset. Azimuth and zenith angle (Z) are
specified for the midpoint time of the observation. The flux densities are the 73.8 MHz values given
in LWA Memo 155 [1], scaled to 74.03 MHz using α = −0.58 and α = −0.72 for Cyg A and Cas A
respectively, and Cas A is further scaled by −0.75%/yr [2].

The data are output from LWA1 in complex-valued baseband “I-Q” format, with 8 bits for I
and 8 bits for Q. A frequency of zero in this dataset corresponds to a sky frequency of 74.03 MHz.
RFI conditions appear to have been relatively benign, as is apparent in the results presented in this
memo. As part of (my) standard RFI mitigation procedures, about 0.03% of the samples (those
having the largest magnitudes) were “plinked”; i.e., set to zero. The plinked samples are roughly
uniformly distributed throughout the dataset; i.e., generally not associated with long (i.e., many
contiguous samples) events.

3 Theory and Assumptions

The analyses described in this memo are entirely narrowband; that is, it is assumed that delays
are perfectly represented as phase shifts. This is justified by the fact that that the maximum time-
of-flight across the longest baseline in the array (about 390 m) is 1.3 µs << the sample period
(100 kSPS)−1 = 10 µs. Within the station array itself – i.e., excluding the “outrigger” stand (258)
– the maximum time-of-flight decreases to about 0.4 µs. Lifting the narrowband assumption (either
by channelizing the data and operating on narrower subbands, or by using fractional sample delay
techniques in lieu of phase-only processing) might yield slightly better results, but probably not
significant improvement in the context of this study.

For later convenience, we now introduce some mathematical shorthand. The voltage induced at
dipole n is assumed to have the form

un(t) = an(ψ1)s1(t) + an(ψ2)s2(t) + zn(t) (1)

where s1(t) and s2(t) are the signals incident from discrete point sources 1 and 2 at a reference
point at the origin of the array coordinate system, an(ψ) represents the response of antenna n to a
signal incident from direction ψ (including the effect of displacement from the origin), and zn(t) is
the signal induced in antenna n by external noise. “ψ” is shorthand for a two-dimensional pointing
(e.g., θ & φ, or altitude & azimuth). External noise is assumed to dominate over internal noise,
although this assumption will not prove to be important in subsequent analysis here.

The value which is actually measured, xn(t), depends on the instrumental gain and phase cn (a
complex coefficient), which is assumed to be time invariant, so that xn(t) = cnun(t). For convenience,
we define hn(ψ) = cnan(ψ) so that

xn(t) = hn(ψ1)s1(t) + hn(ψ2)s2(t) + cnzn(t) . (2)

Let y(ψp, t) be the output of the phase-and-sum beamformer which points in direction ψp, where
p = 1 (for source 1) or 2 (for source 2). This output can be written in the form

y(ψp, t) =

N
∑

n=1

bn(ψp)xn(t) , (3)
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where the phase-and-sum beamforming coefficients bn(ψp) are given by

bn(ψp) =
h∗n(ψp)

|hn(ψp)|
. (4)

This leaves the question of how to determine the hn(ψp)’s. One possible strategy is simply to use
the definition hn(ψp) = cnan(ψp), which would require accurate knowledge of the array geometry
(currently reasonable to assume), accurate knowledge of the antenna patterns (not safe to assume)
and accurate knowledge of the instrumental gains and phases (currently not safe to assume in light
of recently discovered DP issues). Alternatively, we can obtain the hn(ψp)’s (and subsequently the
bn(ψp)’s) directly from the data. The procedure is derived below.

The correlation between the data xn(t) and xm(t) collected from any two antennas n and m is

ρnm(t) =

∫ t

t−τ

xn(t
′)x∗m(t′)dt′ = 〈xn(t)x

∗

m(t)〉 (5)

where τ is the integration time, and the “angle brackets” notation on the right is used as a convenient
shorthand for time domain averaging. Assuming the xn(t)’s have the form of Equation 2, and
assuming s1(t), s2(t), and the zn(t)’s are mutually uncorrelated, ρnm has the form

ρnm(t) = hn(ψ1)h
∗

m(ψ1)
〈

|s1(t)|
2
〉

+ hn(ψ2)h
∗

m(ψ2)
〈

|s2(t)|
2
〉

+ cnc
∗

m 〈zn(t)z
∗

m(t)〉 . (6)

Let S1 =
〈

|s1(t)|
2
〉

, and note S1 is time-invariant if the flux of source 1 is time-invariant. Similarly,

S2 =
〈

|s2(t)|
2
〉

. Employing this notation, we have

ρnm(t) = hn(ψ1)h
∗

m(ψ1)S1 + hn(ψ2)h
∗

m(ψ2)S2 + cnc
∗

m 〈zn(t)z
∗

m(t)〉 . (7)

It will be demonstrated in the next section that it is possible to identify and separate the three terms
in the above equation when ρnm(t) is obtained directly from data. Let the first term – the part of

the correlation associated with the source 1 – be ρ
(1)
nm(t); i.e.,

ρ(1)nm(t) = hn(ψ1)h
∗

m(ψ1)S1 . (8)

Now, imagine we obtain ρ
(1)
nm(t) for n = 1...N and some fixed m (we will choose m to correspond to

the outrigger dipole later, but this is not important at the moment), from the data, using Equation 5.

From this set of N correlations, let us choose just one – we shall call it ρ
(1)
lm(t) – to be a “reference”

correlation. Now note for each n:

ρ
(1)
nm(t)

ρ
(1)
lm(t)

=
hn(ψ1)h

∗

m(ψ1)S1

hl(ψ1)h∗m(ψ1)S1
=
hn(ψ1)

hl(ψ1)
. (9)

Further, note

[

ρ
(1)
nm(t)

ρ
(1)
lm(t)

]

∗
∣

∣

∣

∣

∣

ρ
(1)
nm(t)

ρ
(1)
lm(t)

∣

∣

∣

∣

∣

−1

=

(

hn(ψ1)

hl(ψ1)

)

∗
∣

∣

∣

∣

hn(ψ1)

hl(ψ1)

∣

∣

∣

∣

−1

=
h∗n(ψ1)

|hn(ψ1)|

[

h∗l (ψ1)

|hl(ψ1)|

]

−1

= bn(ψ1)

[

h∗l (ψ1)

|hl(ψ1)|

]

−1

.

(10)
In other words: the above N values, which can be obtained from data, give us the N phase-and-sum
beamforming coefficients times a unity-magnitude constant which is the same for all n. Since the
only difference from bn(ψ1) is a phase shift which is the same for all n, these values are equally
suitable as phase-and-sum beamforming coefficients. We shall refer to the coefficients obtained in

this way as the b
(l)
n (ψ1)’s. Similarly, we may obtain b

(l)
n (ψ2)’s, which are the beamforming coefficients

for pointing toward ψ2 (source 2).

Summarizing: The “blind” procedure for generating the N phase-and-sum beamforming coeffi-

cients b
(l)
n (ψp) is as follows:
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1. Obtain the N correlations ρnm(t) with respect to antenna m (we will use the outrigger dipole)
using Equation 5;

2. Extract the ρ
(p)
nm(t)’s (contributions to ρnm(t)’s from the source of interest) using the method

described in the next section; and then

3. Divide each ρ
(p)
nm(t) by one of the correlations (ρ

(p)
lm (t)), conjugate, and divide by the magnitude,

as shown in Equation 10.

It should be noted that this procedure makes no assumptions about mutual coupling or the unifor-
mity of antenna patterns; thus the best possible result will be obtained regardless of the effects of
mutual coupling and independently of the details of the antenna pattern.

Finally, we consider the problem of how to point a beam in directions other than ψ1 or ψ2; i.e.,
directions other than those for which we have strong point sources available for blind calibration.
From Equation 9, we have

ρ
(1)
nm(t)

ρ
(1)
lm(t)

=
hn(ψ1)

hl(ψ1)
=
cnan(ψ1)

hl(ψ1)
. (11)

We define c
(l)
n as follows:

c(l)n =

[

ρ
(1)
nm(t)

ρ
(1)
lm(t)

]

a−1
n (ψ1) =

cn

hl(ψ1)
. (12)

Note that the c
(l)
n ’s are simply the cn’s times a constant which is the same for all n. Now from

Equation 4:

bn(ψ1) =
h∗n(ψ1)

|hn(ψ1)|
=

c∗na
∗

n(ψ1)

|cnan(ψ1)|
=

(

c
(l)
n

)

∗

a∗n(ψ1)
∣

∣

∣
c
(l)
n an(ψ1)

∣

∣

∣

h∗l (ψ1)

|hl(ψ1)|
. (13)

Now from Equation 10 we have:

b(l)n (ψ1) =

(

c
(l)
n

)

∗

a∗n(ψ1)
∣

∣

∣
c
(l)
n an(ψ1)

∣

∣

∣

. (14)

Thus, the c
(l)
n ’s can be determined directly from data if the an(ψ1)’s are known. Then, the corre-

sponding phase-and-sum beamforming coefficients for any other direction ψ are obtained using the

same c
(l)
n ’s with the appropriate an(ψ)’s, as follows:

b(l)n (ψ) =

(

c
(l)
n

)

∗

a∗n(ψ)
∣

∣

∣
c
(l)
n an(ψ)

∣

∣

∣

. (15)

Summarizing: The “repointing without recalibrating” procedure for generating phase-and-sum
beamforming coefficients for any direction ψ is as follows:

1. Obtain the ρ
(p)
nm(t)’s from the data, using steps 1 and 2 of the “blind” procedure described

earlier, using any strong point source p.

2. Compute the c
(l)
n ’s using Equation 12.

3. Compute the b
(l)
n (ψ)’s using Equation 15.

Note that above procedure assumes knowledge of the an(ψ)’s. These are not known accurately (al-
though for the special cases of an(ψ1) and an(ψ1) they can be extracted from data; and perhaps for
other ψ they could be determined using electromagnetic modeling). In this memo, we demonstrate
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that it is possible to form a beam in the desired direction by assuming that the an(ψ)’s are deter-
mined solely by array geometry – i.e., the geometry-induced phase shifts due to antenna positions –
neglecting the antenna patterns and any differences in the antennas patterns due to mutual coupling
or other considerations.

4 Analysis of the Correlations

The phase-and-sum beamforming procedure described above depends on finding ρ
(p)
nm(t); i.e., the

contribution of source p (p = 1 or 2) to the correlations ρnm(t) between each antenna n and the
reference antenna m. We now tackle this aspect of the problem.

The observed correlation ρnm(t) when n is Stand 248 (located on the far west side of the sta-
tion array) and m is Stand 258 (the outrigger) is shown in Figures 1 and 2. In these figures and
throughout this memo, the integration time τ = 10 s. A fringe pattern is clearly visible with high
signal-to-noise ratio.

Figure 3 shows the Fourier transform of the fringe pattern shown in Figures 1 (and 2). To miti-
gate endpoint effects, a triangular window has been applied to the data before the Fourier transform
and the data has been scaled by a factor of 2 to compensate. The transform reveals that the result
is strongly dominated by three clearly-identifiable components: From left to right, these are Cyg A
(50% of the power), Cas A (21%), and a zero-frequency (“DC”) term (about 16%). The associations
with Cyg A and Cas A can be confirmed from their fringe rates, which depend only on the length and
orientation of the baseline. The “DC” term is a combination of a number of contributions, including
the “DC” term in the spatial correlation of the sky brightness temperature (see Figure 13 of [3]) and
crosstalk internal to the instrument. However, the observed DC component is quite large compared
to the sum of these expected contributions, and should be more carefully studied. For the purposes
of this memo, however, it is important only that we be able to separate it from the the contributions
of Cyg A and Cas A. In any event, Figure 3 confirms the validity of the two-source-plus-noise model
proposed in Section 3, at least for this particular dataset.

Because the contributions of Cyg A and Cas A are well-separated in fringe rate from each other
and from the DC term, it is straightforward to separate them. In this study, we simply set to zero all
samples outside the expected range of fringe rates for the desired source p in the Fourier transform

of the correlation, and then take the inverse Fourier transform. The result is ρ
(p)
nm(t), plus a tiny

residual which is not associated with source p, but just happens to fall within the same range of
fringe rates. It should be noted that this method is not completely foolproof, as it is conceivable
that the fringe rates associated with some baselines may be too close to separate. This was not care-
fully checked, however it does not appear to be have been a significant problem in this dataset/study.

Before moving on, it is interesting to note that Figure 3 already provides sufficient information to
estimate the relative gains between two points in the antenna pattern; namely those corresponding
to the directions to Cyg A and Cas A. Since the known Cas A / Cyg A flux ratio is currently
within ∼ 1% of 1, the ratios of the corresponding peaks in Figure 3 is essentially the gain ratio.
Here it is 0.42 = −3.7 dB. For comparison, we can obtain this also by using the “standalone stand”
model described in LWA Memo 175 [4] (see also [5]); this model predicts −2.8 dB, for an “error” of
−0.9 dB. Figure 7 of LWA Memo 166 [3] suggest that mutual coupling could change the latter result
by roughly ±2 dB, so the difference could be attributable to mutual coupling. To get a better idea,
this experiment was repeated for all 239 dipole-outrigger baselines; the mean was found to be 0.62
with a standard deviation σ = 0.26. The corresponding mean−σ, mean, and mean+σ values are
−4.3, −2.1, and −0.6 dB, respectively. The corresponding “errors” relative to the model prediction
are −1.6, +0.7, and +2.2 dB. Thus, it seems that the model fits the data fairly well in an average
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Figure 1: ρnm(t), where n is Stand 258 and m is the outrigger. Top: Real part; Bottom: Imaginary
part.
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Figure 2: Same as Figure 1, except now the top plot is magnitude, and the bottom plot is phase.
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Figure 3: Magnitude of the Fourier transform of the fringe pattern shown in Figure 1. The resolution
is 279 µHz.
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sense, but the results are highly variable from baseline to baseline. This is presumably due to mutual
coupling, as the observed range of variation is roughly as predicted by Figure 7 of LWA Memo 166.

5 “Blind” Beamforming

We now demonstrate the “blind” beamforming procedure described in Section 3. Beamforming co-
efficients are obtained for Cyg A (“p = 1”) at the midpoint of the dataset. These coefficients then
define a fixed beam through which Cyg A drifts. The result is shown in Figure 4.

From this result and the known flux density of Cyg A (see Table 1) it is possible to estimate
the sensitivity of the beam; specifically, the system equivalent flux density (SEFD) for this source
and pointing. The SEFD is simply the known flux density divided by the apparent signal-to-noise
ratio (SNR). The SNR can be estimated as peak power Pon minus the estimated non-source-related
power Poff , divided by Poff . From Figure 4, Pon ≈ 6.70, Poff ≈ 2.26 (extrapolating across the
apparent noise baseline), and so the SEFD is estimated to be 8.68 kJy.

Because LWA1 is strongly sky-noise dominated, a large fraction of the system temperature is
due to sky noise received through the main lobe and sidelobes of the beam. This makes it difficult
to accurately determine the shape of the beam from Figure 4. The contribution due to distributed
sources (e.g., the all-sky “DC” contribution, the Galactic plane, etc.) can be dramatically reduced
by correlating the beamformer output with the outrigger dipole. The result in this case is shown in
Figure 5. The beamwidth is approximately as expected, with FWHM≈ 4◦. Note the first sidelobes
are clearly visible. The first sidelobe level appears to be approximately −10 dB, which is much higher
than predicted in analyses used to design the array geometry [6]. A second concern is the large,
rapid oscillation observed across the main lobe of the beam. It is possible that this is ionospheric
scintillation; this is considered further in Section 7.

The process is repeated to produce a beam which points at Cas A (“p = 2”) at the midpoint of
the dataset. These coefficients then define a fixed beam through which Cas A drifts. The result is
shown in Figure 6. Note that the beam is significantly wider; however this is expected as Cas A is
at Z ≈ 46◦ whereas Cyg A is at Z ≈ 10◦. The same type of oscillations noted in the Cyg A beam
are again clearly visible.

6 Repointing Without Recalibrating

We now demonstrate the “repointing without recalibrating” (henceforth: “RWR”) beamforming

procedure described in Section 3. Instrumental gains and phases (c
(l)
n ’s) are obtained using Cyg A

at the midpoint of the dataset. The an’s are obtained from array geometry (only) and pointing
direction, assuming (implicitly) that the antennas are isotropic and identical. We then attempt
repointing to:

• The position of Cyg A 15 minutes prior to the midpoint of the dataset (Figure 7),

• A position 10◦ toward the horizon relative to the position of Cyg A at the midpoint of the
dataset (Figure 8), and

• Cas A (Figure 9).

Note that in each case we obtain the expected result. However, careful comparison of Figures 6
(blind beamforming on Cas A) and 9 (RWR beamforming on Cas A after calibrating on Cyg A)
indicates that the beams are not identical.
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Figure 4: “Blind” beamforming: Cyg A drift scan. The three spikes in the last half of the plot are
apparently RFI.
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Figure 5: “Blind” beamforming: Same as Figure 5, except now the Cyg A beam is correlated against
the outrigger dipole.
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Figure 6: “Blind” beamforming: Same as Figure 5, except now the beam is phased up on Cas A at
the midpoint of the dataset, and correlated against the outrigger dipole.

13



0

1

2

3

4

5

6

7

8

-1500 -1000 -500 0 500 1000 1500

<
 b

ea
m

 *
 c

on
j(o

ut
rig

ge
r)

 >
 [a

rb
. p

ow
er

 u
ni

ts
]

relative time [s]

Figure 7: RWR beamforming: Beam repointed to position of Cyg A 15 min (900 s) prior to the
midpoint of the dataset, and correlated against the outrigger dipole.
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Figure 8: RWR beamforming: Beam repointed to position of Cyg A at the midpoint of the dataset
and then shifted 10◦ toward the horizon (i.e., increasing Z), and correlated against the outrigger
dipole. (No detectable source expected.)
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Figure 9: RWR beamforming: Beam repointed to position of Cas A and correlated against the
outrigger dipole.
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7 Rapid Variation in Fringe Magnitudes – Ionospheric Scin-

tillation?

It is observed in the results of previous sections that large, rapid oscillations on time scales of roughly
10-100 s seem to accompany source detections. Figure 10 shows an attempt to better understand this

phenomenon. Each curve is |ρ
(1)
nm(t)| between some antenna n and the outrigger, filtered to exclude

Cas A and the DC contributions. Unlike the procedure described in Section 4, in this case the fringe
rate filtering excludes only these contributions, leaving behind Cyg A and any higher-frequency
content. Since Cyg A then dominates and the antenna patterns are presumably relatively constant
over the duration of the observation, the magnitude of the filtered fringes is roughly constant, yet
with relatively large, distinctly non-noise-like features. The bottom panel shows the incoherent
average of all dipole-outrigger baselines, and seems to indicate some features in common between
baselines. Further, comparison of the averaged fringe magnitudes to Figures 4 and 5 seems to suggest
the that at least some of the same features exist in the beamformer output. Assuming that it is true
that the same variations appear in all baselines as well as the beamformer output, it seems likely
that the variations are due to a bona fide variation in the source flux, presumably due to ionospheric
scintillation. However, additional effort is warranted to confirm that this is the cause, as opposed
to some other issue; e.g., long-delay multipath, or an undetected instrumental issue.
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Figure 10: Cyg A fringe magnitudes (filtered to remove Cas A and the DC term). The top three
panels are examples from 3 dipole-outrigger baselines; the bottom panel is the incoherent average
of all 239 baselines similarly defined.
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