
Properties of 
Electromagnetic Radiation

Chapter 5

Concepts:

• Electromagnetic waves
• Types of spectra
• Temperature
• Blackbody radiation

• Dual nature of radiation 
• Atomic structure
• Interaction of light and matter
• Emission and absorption lines
• Doppler shift 1

Radiation carries information

• How hot is the Sun?
• How does it compare to other stars?
• What is the chemical composition of stars?
• What is the nature of gas clouds between the stars? 
• How do stars and gas clouds orbit in galaxies?
• How do we know that the Universe is expanding?
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Radiation – light, radio waves, infrared, etc. – travels as
electromagnetic waves

What is light?

• Light is an example of electromagnetic (EM) radiation

• Electromagnetic radiation can be treated either as
– waves
– photons (“particles” of radiation)

• Both natures have to be considered to describe all 
essential properties of radiation

3

What is a wave?

• A wave is the transfer of energy from one 
point to another, without the transfer of 
material between the points

• A wave is manifested by a periodic change in 
the properties of a medium that it travels 
through
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Amplitude:          height of the wave (e.g. m for water waves)
Wavelength (λλλλ):  distance between adjacent crests (m)
Period:                the time it takes for one complete wave cycle to pass a given point (s)
Frequency (ν):    number of wave cycles that pass a point in 1s (Hz, or cycles/sec)

Speed:                horizontal speed of a point on a wave as it propagates (m/s)

Period = 1/ν
Speed = λλλλ/P = λλλλν
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Properties of a wave Electromagnetic waves

• EM waves:  self propagating, oscillating electric and magnetic fields.

• Speed of all EM waves (in vacuum) is speed of light c = 3.00 x 108 m/s.

• c = λ ν, where λ is the wavelength, and ν is the frequency [Hz].

EM waves are different from other waves, since 
they don’t need a medium to propagate in!
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The human eye is sensitive to EM radiation with 
wavelength range:
400 nm  < λ <  700 nm where 1 nm =10-9 m.
= 4,000 Å < λ <  7,000 Å where 1 Å is 10-10 m.

[nm = nanometer, 
Å = Ångström]

This goes from violet to red.

This also demonstrates refraction: light bends when density of
medium changes.  Bending angle depends on wavelength.  Also
introduces a way to make a spectrum. 7

The electromagnetic spectrum
frequency

Note use of nm, µm, mm, cm, m, km

There’s much more beyond the 
visible!

In order of increasing wavelength:

Gamma rays, X rays, Ultraviolet 
(UV), Visible, Infrared (IR), 
Microwaves, Radio.
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Different objects in the Universe give off 
EM radiation in different ways, depending 
on their composition and physical 
condition.
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Apparent Brightness  α

1
d2

d is the distance between 
source and observer.

Each square gets 
1/4 of the light

The "Inverse-Square" Law for Radiation
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Each square gets 
1/9 of the light

How do radiation and matter 
interact?

• Emission - light bulb, star

• Absorption - your skin can absorb light, in turn the absorbed energy 
heats your skin.  Dust grains in space behave similarly.  Atoms also 
absorb radiation.

• Transmission - glass and air lets light pass through (with refraction 
and diffraction possible)

• Reflection and scattering - light can bounce off matter leading to 
reflection (in one direction) or scattering (in many directions).  Dust 
grains also scatter light.
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Three types of spectra and Kirchhoff's laws
Kirchhoff's laws of 
spectroscopy 
(1859):

A hot, opaque body, or 
a hot, dense gas 
produces a continuous 
spectrum.

A hot, transparent gas 
produces an emission 
line spectrum.

A cool, transparent gas 
in front of a source of a 
continuous spectrum 
produces an absorption 
line spectrum.
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Note: two ways to show a spectrum:

1) as an image
2) (more usefully) as a plot of intensity vs wavelength

(or frequency)
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Each element has unique spectral lines.  For a gas of a 
given element, absorption and emission lines occur at 
same wavelengths. 

Understood after development of quantum mechanics in 
early 1900’s.

Sodium
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Astronomical and other examples:

- Continuous:  incandescent lights, 
“the universe”

- Emission line:  neon lights, hot 
interstellar gas -- “HII regions”, 
“supernova remnants”.

- Absorption line: stars (relatively 
cool atmospheres overlying hot 
interiors). 
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Two important concepts for understanding spectra: 

temperature and “blackbody radiation”…

Temperature
• A measurement of the internal energy content of an 

object.

• Solids: higher temperature means higher average 
vibrational energy per atom or molecule.

• Gases: higher temperature means more average 
kinetic energy (faster speeds) per atom or molecule.

• If it gets cold enough, all motion will stop. How cold is 
that?

• Corresponds to a temperature of -273°C (-459°F) -
absolute zero. 16



Kelvin temperature scale

• An absolute temperature scale in which the temperature is directly 
proportional to the internal energy of the object.

– Related to Celsius scale, but a different zero point
– T(K) = T(°C) + 273 °C
– 0 K: absolute zero – all motion stops
– 273 K: freezing point of water
– 373 K: boiling point of water

See box 5.1
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How do temperature and energy relate?

Consider an atom or a molecule in a gas:

For gas at temperature T (in K),
average KE is:
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At a given T, there is an average KE for all the atoms or molecules 
in a gas, but their average speed will depend on their mass.  Even 
for each mass, this V is only an average.  Particles have a spread of 
speeds around the average.

Average (strictly “root-
mean-square”) speed of 
particles of mass m in a 
gas of temperature T

k is Boltzmann’s constant, 
and has value 1.38 x 10-23 kg m2 s-2 K-1, 
(or Joules K-1).  For particles of mass m,
equate:
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Blackbody (thermal) radiation
• A blackbody is an ideal object that absorbs all radiation at all 

wavelengths: perfect absorber. Charcoal is a decent example.
– No reflected light, no transparency

• But it re-emits radiation with a continuous spectrum of 
characteristic shape

• The more radiation an object absorbs and re-emits, the higher 
the temperature.

• The spectrum of its radiation has no contribution from reflected 
light.  It’s all re-emitted radiation, and spectrum depends on its 
temperature only (not on , e.g., composition).  

• Hot, dense objects, like light bulb filaments or stars, shine with a 
spectrum that is approximately that of a blackbody, despite their 
temperature being due to internally generated energy. 19

Intensity, or brightness, as a function of frequency (or wavelength) is 
given by the “Planck formula”:

where h is Planck’s constant
(h=6.6 x 10-34 J s), k is
Boltzmann’s constant, and c is
the speed of light.

Units of I
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Example: 3 blackbody (Planck 
curves) for 3 different temperatures 
typical of star atmospheres.

This is explanation of Kirchhoff’s first law
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Wien's law for a blackbody

λmax = 0.0029 (m K) / T

where λmax is the wavelength of maximum emission of the object in m 
and T is the temperature in K.   The constant has units of m K.

=>  The hotter the blackbody, the shorter the wavelength of maximum 
emission

Hotter objects are bluer, cooler objects are redder.
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Wavelengths of peaks of the curve 
illustrate Wien’s Law.

The spectrum of the Sun is almost 

a blackbody curve.
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Example 1: How hot is the Sun at the “surface”?

Measure λmax to be about 500 nm, so
Tsun = (0.0029 m K) /λmax = 
(0.0029 m K) / 5.0x10-7 m = 5800 K

Example 2: At what wavelength would the spectrum 
peak for a star which is 5800 K / 2 = 
2900 K?  

Or a star with T= 5800 K x 2 = 11,600 K?  

What colors would these stars be?
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Which stars are hotter, 
and which are cooler?
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Stefan-Boltzmann law for a 
blackbody

Fe = σT4

Fe is the emitted or emergent energy flux, in joules per second per 
square meter of surface (J s-1 m-2, or W m-2)  over all wavelengths

σ is a constant = 5.67 x 10-8 W m-2 K-4

T is the object’s temperature (in K).

The hotter the blackbody, the more 
radiation it gives off per unit area per second
at all wavelengths.

1 m2
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At any wavelength, a hotter body 
radiates more intensely.

27

Example: If the temperature of the Sun were ten times 
what it is now, how much more energy 
would emerge from a unit area on the Sun 
every second?

See box 5-2 for more examples.
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Luminosity and Blackbody Radiation

Luminosity is radiation energy emitted
per second from entire surface:

L = Fe x (surface area)

Units of L are J s-1 or W

For sphere (stars),

L = 4 π R2 x Fe

For spherical blackbody (stars, approximately):

L = 4 π R2 σT4
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Luminosity and Incident Flux

For a source of luminosity L at a distance d from you, the incident flux
you measure is:

Fi =                 (in W m-2)
L

4πd2
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(True for any kind of radiation, not just blackbody).

Each square gets 

1/4 of the light

Each square gets 

1/9 of the light


