

The Sun

Chapter 16

Most important concepts: Energy production Stability

Basic data

Diameter Mass Density Temperature Luminosity Rotation rate Composition (atmos, by mass) Orbital period (MW) $\begin{array}{ll} 1.4 \times 10^{6} \, \text{km} &= 109 \, \text{D}_{\text{earth}} \\ 2.0 \times 10^{30} \, \text{kg} &= 333,000 \, \text{M}_{\text{earth}} \\ 1400 \, \text{kg/m^{3}} \, (160,000 \, \text{kg/m^{3}} \, \text{in center}) \\ 5800 \, \text{K} \, (\text{``surface'')} \, \text{to} \, 1.55 \times 10^{7} \, \text{K} \, (\text{ctr}) \\ 3.86 \times 10^{26} \, \text{W} \\ 25 \, \text{days} \, (\text{equator}), \, 35 \, \text{days} \, (\text{poles}) \\ 74\% \, \text{H}, \, 25\% \, \text{He}, \, 1\% \, \text{other elements} \\ 220 \times 10^{6} \, \text{years} \end{array}$

The Sun is a star: a shining ball of gas powered by fusion

Hydrostatic equilibrium

Why is the Sun stable (not contracting or expanding)? Gravity makes objects want to collapse. Pressure causes objects to expand.

In a star like the Sun, these are in balance at every depth:

hydrostatic equilibrium

At early or late times in a star's life, this balance is not achieved, e.g. contraction during formation, expansion during late stages of evolution. What is pressure and how do we calculate it? And what provides it???

The Ideal Gas Law

- Consider pressure that gas particles in a box exert on the walls (P=F/A).
- Particles in hot gas move faster, and collide with more force than those in a cooler gas => hot gas exerts higher pressure

 However, gas pressure also depends on the number of particles that are colliding with the surface area per sec. So depends on <u>number</u> <u>density</u> n [m⁻³] as well as temperature. • This is expressed in the ideal gas law:

P = nkT

where *P* is the gas pressure [N/m² or Pascals], *n* the <u>number</u> density [m⁻³], and *k* is Boltzmann's constant.

Law works well for most stellar applications (exceptions later).

Pressure very high at center of Sun, so *n* and *T* both very high.
 What provides this pressure? Thermonuclear fusion in the hot core: H is being fused into He. Only possible because *T* is so high (high *n* helps too), as we'll see.

Reminder: elements and isotopes

- Elements: depends on # of protons
- Isotopes: depends on # of neutrons
- Atoms: nuclei with electrons, with charge balance
- lons: charge imbalance
- Example nuclei: ${}^{1}H = one proton$ ${}^{2}H = one proton with one neutron (a.k.a. deuterium)$ ${}^{3}He = 2p + 1n (light isotope of He)$ ${}^{4}He = 2p + 2n (common isotope of He)$

Antimatter, annihilation and neutrinos

- Antimatter: for every charged particle there is an antiparticle with the opposite charge.
 - Example: positron (e⁺) is like the electron except positive charge
- Annihilation: if a particle and its antiparticle collide they completely disappear (explosively) as mass and liberate energy in the form of photons. Mass-energy conversion is governed by Einstein's famous equation:

- Exotic particles with no charge and little mass.

- Tiny probability of interacting with

• Neutrinos (v):

other particles.

7

Fundamental forces of nature

Interactions in nature are governed by four fundamental forces:

- Gravitational force
- Electromagnetic force
- Weak nuclear force
- Strong nuclear force
- Gravity dominates on largest scales: binds massive objects together, and mediates orbital motions
- Electromagnetism dominates on atomic scale: binds electrons to protons, atoms to atoms
- Strong and weak forces dominate on nuclear scales (~10⁻¹⁵ m): strong force binds protons to neutrons, important for fusion. Very strong on this scale but quickly falls off for larger separations. Weak force important for radioactive decay

Hydrogen fusion

Box 16-1 and Cosmic Connections

- Fusion is any event where nuclear particles collide and join together.
- Fusion reactions obey several conservation laws.
- Sun and stars fuse H into He for most of their lives. This creates energy.
- How to fuse 4 ¹H (p) into a ⁴He (2p+2n)?
 - Unlikely 4 protons are colliding at once need different reaction chain
 - Must turn 2 protons into 2 neutrons
 - Must be > 10^7 K to get protons close enough for fusion

Key: bring nuclei sufficiently close ($\sim 10^{-15}$ m) for the strong force to dominate over the electromagnetic force.

Fusion provides energy to support stars against gravity. Making new elements and shining are "by-products"

The proton-proton chain - in pictures

- Starting point: at 1.5x10⁷ K, hydrogen in the core of the Sun is completely ionized, thus a mixture of free electrons and protons. Ignore other elements.
- Step 1:

 ^{1}H

 ^{1}H

~~~~~

| Proton-proton chain                                                                                                                                                        | Energy Generation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $p + p \rightarrow {}^{2}H + e^{+} + \nu + \gamma$ (twice)                                                                                                                 | <ul> <li>The 4 protons have 4.8 x 10<sup>-29</sup> kg more mass than the He nucleus (0.7% of the total mass has been converted to energy).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                      |
| $(e^{+} + e^{-} \rightarrow \gamma + \gamma)$<br>$p + {}^{2}H \rightarrow {}^{3}He + \gamma \qquad (twice)$<br>${}^{3}He + {}^{3}He \rightarrow {}^{4}He + p + p + \gamma$ | <ul> <li>E=mc<sup>2</sup> =&gt; 4.3 x 10<sup>-12</sup> J is released by the formation of a single He nucleus.</li> <li>L<sub>☉</sub>/E = (3.9 x 10<sup>26</sup> J/s) / (4.3x10<sup>-12</sup> J) = 9.1x10<sup>37</sup> conversions per second. Each conversion involves four protons, so (9.1x10<sup>37</sup>/sec) x (4m<sub>p</sub>) = 6x10<sup>11</sup> kg/sec of H is converted to He. About 4x10<sup>9</sup> kg (0.7% of this mass) converted to energy per second (also just L<sub>☉</sub> /c<sup>2</sup>).</li> </ul> |
| <list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item>          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |