How to Understand Stars

 Chapter 17How do stars differ? Is the Sun typical?
Image of Orion illustrates:

- The huge number of stars
- Colors
- Interstellar gas

How can we describe/classify stars?

- Location
- Temperature
- Luminosity
- Mass
- Evolutionary state
- Physical size
- Composition
- True motion in space
- Environment

Location in space

Two dimensions are easy - measure angular position from image. Distance not so easy, the only direct means is by parallax. Other methods later.

Reminder: parallax is the apparent angular shift of an object due to a change in an observer's point of view. In general, a star will appear to follow an elliptical path over a year.

Gaia

- Launched in 2013 (European). Follow up to Hipparcos, all-sky survey instrument. Aims to measure parallaxes for a billion stars with 20μ as accuracy. Will also measure colors, radial velocities, and (see next slide) proper motions. http://sci.esa.int/gaia/

Proper motion

- Caused by movement of a star relative to the Sun (in contrast to parallax which is an apparent motion of star due to Earth's motion). Hard to measure for distant stars
- Proper motion is the angle in arcsec a star moves per year
- The superposition of this linear motion and the elliptical motion from the parallax effect leads in general to a helical path on the sky (if both motions can be detected).

$v_{t}=4.74 \mu d$, where μ is proper motion ["/yr], d is distance [pc], and v_{t} is in units of km / s.

Depends on distance

Radial velocity
Given by Doppler shift:
$v_{r}=\left[\left(\lambda_{\text {observed }}-\lambda_{\text {emitted }}\right) / \lambda_{\text {emitted }}\right] c \quad$ Independent of distance

Space Velocity (relative to the Sun, which is also moving through space) Speed and direction of star. From Pythagorean theorem

$$
V=\sqrt{V_{t}^{2}+V_{r}^{2}}=\sqrt{(4.74 \mu d)^{2}+V_{r}^{2}}
$$

Typical space velocities are 20-100 km/s for nearby stars.

Why care about stellar motions?

- A tool to learn about stellar properties and structure and dynamics of our Galaxy, even to reveal unseen objects:
- Motion of the Sun
- Rotation of the Galactic disk
- Binary stars - masses of stars
- Masses of clusters of stars
- "Stellar streams"
- Unusual stars
e.g. Stars orbiting an unseen mass at the center of the Milky Way:

Reminder of Luminosity, Incident Flux

- (Box 17.2)
- Luminosity (L, intrinsic property): the total energy output, a physical property of the star. Doesn't depend on distance. Units J/s or W.
- Apparent brightness or incident flux (b, or F_{j}): measures how bright a star appears to be. Does depend on distance! Units $\mathrm{W} / \mathrm{m}^{2}$.
- The incident flux diminishes as the inverse square of the distance.
$F_{i}=L / 4 \pi d^{2}$

Apparent magnitudes

- Logarithmic (base 10) measurement of apparent brightness (incident flux) of stars. Modern scale a refinement of Hipparchus' original scale of magnitudes 1-6. Used mostly in optical astronomy (also near-IR, UV).
- A difference of 5 magnitudes implies a factor of 100 in apparent brightness. Smaller magnitude means brighter star!
- Magnitude difference related to brightness ratio:

$$
m_{2}-m_{1}=2.5 \log \left(\frac{b_{1}}{b_{2}}\right)
$$

- So if $\frac{b_{1}}{b_{2}}=100$, then $2.5 \log \left(\frac{b_{1}}{b_{2}}\right)=5$
- This is a logarithmic and relative scale - zero point arbitrarily chosen.

The apparent magnitude scale - some examples:

Apparent magnitude difference $\left(m_{2}-m_{1}\right)$	Ratio of apparent brightness $\left(b_{1} / b_{2}\right)$
1	2.512
2	$(2.512)^{2}=6.31$
3	$(2.512)^{3}=15.85$
4	$(2.512)^{4}=39.82$
5	$(2.512)^{5}=100$
10	$(2.512)^{10}=10^{4}$
15	$(2.512)^{15}=10^{6}$
20	$(2.512)^{20}=10^{8}$

Absolute magnitude

Caution:

Apparent magnitude is NOT luminosity! A star may have bright (small) apparent magnitude because it is close to us, or because its luminosity is high.

We want a brightness scale that takes distance into account and measures luminosity, an intrinsic property of star.

Absolute magnitude:

Definition: the apparent magnitude a star would have if it were precisely 10 pc away from us. Call this M. Then, for two stars with luminosities L_{1} and L_{2}, the difference in their apparent magnitudes at 10 pc would depend only on the ratio of their luminosities:

$$
M_{2}-M_{1}=2.5 \log \left(\frac{L_{1}}{L_{2}}\right)
$$

13

Zero point again arbitrarily chosen. Examples:

M	Star
-5.6	Betelgeuse
1.3	Sirius A
+4.7	Sun
+8.6	Sirius B

Given this definition, the inverse square law is expressed in magnitudes by:

$$
m-M=5 \log (d)-5
$$

m is apparent magnitude (measured)
d is distance in pc
M is absolute magnitude

Distance modulus

- Instead of giving an object's distance, we sometimes speak of its "distance modulus" m - M

$$
m-M=5 \log (d)-5
$$

$\mathrm{m}-\mathrm{M}$	Distance
0	10 pc
10	1000 pc
15	$10,000 \mathrm{pc}$

Note these magnitudes do not refer to any wavelength or color. But it is in practice difficult to measure a star's light over entire spectrum. Typically observed through a filter that lets in, e.g., blue, red, infrared, UV, etc. light.

Luminosity function

- A function you can examine once you have distances to many stars
- Describes the relative numbers of stars with different luminosities
- Note the enormous range in luminosity
- There are more faint stars than bright. Why?

Determined in Solar neighborhood

Colors and temperatures of stars

- Reminder: from Wien's law $\lambda_{\text {max }}=0.0029 / T$ (units: m, K) we expect hotter objects to be bluer.

Wavelength (nm) -

Wavelength (nm)

To measure colors

- A set of filters can be used to determine the colors of stars

The Johnson UBV system

- Determine relative brightness in, e.g., B and V filters: b_{V} / b_{B}. (Usually put on magnitude scale, i.e. $m_{B}-m_{V}$, but don't worry for this class).
- Note we don't need distances

Temperature, color and color ratio

- The $b_{\mathrm{V}} / b_{\mathrm{B}}$ color ratio is small for hot stars, and large for cool stars.

