What we know so far about stars:

- Distances

True 3-D motion

- Luminosity/Absolute magnitude
- Temperature/Spectral type/Color
- Mass (for some)
- Radii
=> synthesize this information (except motions) into the Hertzsprung-Russell ($\mathrm{H}-\mathrm{R}$) diagram.

The Hertzsprung-Russell (H-R) Diagram (1911)

- Simple in concept, but a VERY powerful tool to examine stellar structure and evolution
- Hertzsprung and Russell independently asked themselves: "What are the two basic things about stars we can measure"?

1. Luminosity (when distance known)
2. Temperature (or color or spectral type)

H-R diagram is a plot of L (or Abs. Mag.) vs. T (or color, spectral type) for stars.

H-R diagram of some nearby and bright stars

(y-axis may also be absolute magnitude in some filter, e.g. V. x-axis may be b_{b} / b_{v} color. "Color magnitude diagram")

Since we know
$L=4 \pi R^{2} \sigma T^{4}$
we can plot lines of constant R if both axes are log.

A star's position in H-R diagram depends primarily on mass and evolutionary state.

Main Sequence stars are in the longest phase of their lifetime where they fuse H into He . They move little in this diagram.

Other stars are at late evolution stages.

How do we know? Our stellar models predict L and T for different masses and stages of evolution.

Main Sequence is a sequence of mass.

So M, L, T, R all related for Main Sequence stars.

How Long do Stars Live

(as Main Sequence Stars)? See Box 19.2

Main Sequence stars fuse H to He in core. Lifetime depends on mass of H available and rate of fusion. Mass of H in core depends on mass of star, roughly linearly. Fusion rate is proportional to luminosity (fusion reactions make the radiation energy).
lifetime α
mass of H in core
α

$\frac{\text { mass of star }}{\text { luminosity }}$

So,
since luminosity α (mass) ${ }^{3.5}$,
lifetime $\alpha \quad \frac{\text { mass }}{(\text { mass })^{3.5}} \quad$ or $\quad \frac{1}{(\text { mass })^{2.5}}$

Or can write:

$$
\tau / \tau_{\odot}=(M \odot / M)^{2.5}
$$

So if the Sun's lifetime is 10 billion years, a $10 \mathrm{M}_{\odot}$ star's lifetime is only: $1.0 \times 10^{10} \mathrm{yrs} \times \frac{1^{2.5}}{10^{2.5}}=3 \times 10^{7}$ years. Such massive stars live only "briefly".

With various quantities determined, can start relating to each other. For Main Sequence stars only:

What if we find a star with $\mathrm{T}=5000 \mathrm{~K}$ and measured incident flux, but don't know its distance?

Can we place it in the H-R diagram and find its luminosity, and thus distance?
How do we know where to place it on the L axis?

The sizes of stars on an H-R diagram

Line width and stellar size

- Atmospheric pressure affects width of absorption lines:
- Lower pressure => decreased line width
- Higher pressure => increased line width
- The atmospheric pressure is lower in the photosphere of an extremely large red giant than in a main sequence star of similar temperature
=> giant's spectral lines are narrower

Luminosity classes

- We classify stars in luminosity classes; I-V (from narrow lines to wide lines, which also is from very luminous to less luminous)
- Thus a star is classified by its spectral type and its luminosity class.
- Full description of the Sun is G2 V

Spectroscopic parallax

- Without knowing a star's distance, we can place it on the H-R diagram (spectral type and width of lines).
- This yields a luminosity, to be compared to the star's apparent brightness.
- => distance can be estimated (to about $\pm 10 \%$).

This is how we infer distances to most
isolated stars! (We'll return to clusters)

